• Title/Summary/Keyword: 곡선주행성능

Search Result 67, Processing Time 0.027 seconds

Study on Entering Improvement of Acceleration Lane onto an Expressway Using a Traffic Simulation (교통시뮬레이션을 활용한 고속도로 유입연결로 가속차로 진입 개선방안에 관한 연구)

  • Roh, Hee-Chan;Kim, Nak-seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.409-415
    • /
    • 2022
  • The length of the acceleration lane in the area of entrance terminals is calculated based on 13 PS/ton horsepower of a cargo truck in Korea, so it is generally overestimated compared with the capacity of most vehicles traveling on an entrance ramp. Most drivers have, therefore, an indiscreet tendency to enter the main lane in all sections of an acceleration lane, which affects the traffic flow of the main lane. Because of this tendency, measures are required to minimize the impact on traffic flow of the main lane. The operating speed, rate of entrance, and traffic volume for each vehicle were investigated at the entrance terminals of the interchanges (ICs) of Yangji IC, Suseok IC, Yongin IC, and Osan IC, and the level of improvement in traffic flow was analyzed via VISSIM simulation. From the VISSIM simulation analysis, 74.0 % of the total vehicles traveled over the specified speed from the nose point where drivers would be able to recognize the traffic condition of the main carriageway, or the point at which there is a simplification of the curve section. In addition, 88.6 % of the vehicles entered the main carriageway up to 0.8 points compared with the entire length of the acceleration lane. It was subsequently found that an improvement of average speed in the main carriageway and at the entrance ramp can be achieved from 60.1 km/h to 68.5 km/h by intentionally limiting the entrance point onto the main carriageway up to 0.265 points of the entrance ramp.

Development of a Soil Hardness Meter with Strain Gages (스트레인 게이지를 이용(利用)한 토양(土壤) 경도계(硬度計)의 개발(開發) (I))

  • Kim, Tae Han;Lee, Ki Myung;Jang, Ik Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.95-100
    • /
    • 1983
  • A soil hardness meter with strain gages was developed in order to measure the hardness of the soil. Soil hardness tests were conducted at the laboratory based on this measuring system. Also, these results were compard with that from the cone penetrometer which is widely used for this purpose. The following conclusions were drawn from the results. 1. Since the correlation coefficient of calibration curve obtained from the soil hardness meter with strain gages was 0.99876 and that of calibration curve obtained from the cone penetrometer with dial gage was 0.97150, the soil hardness meter with strain gages was more recomendable than that with dial gage for this purpose. 2. Standard deviations of soil hardness for sands and soil of paddy field when the soil hardness meter with strain gages was used were 6.794 and 8.271, respectively and that of soil hardness for sands and soil of paddy field when the cone penetrometer with dial gage was used were 7.490 and 9.169, respectively. Thus, the soil hardness meter with strain gages seemed to have lower measuring error than with dial gage.

  • PDF

Analysis of Factors Influencing upon the Metro Wear Using the Classification and Regression Trees (CART 분석을 이용한 지하철 마모 영향인자 분석)

  • Jeong, Min Chul;Lee, Won Woo;Kim, Jung Hoon;Kong, Jung Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.38-38
    • /
    • 2011
  • 일반적으로 레일마모는 열차의 주행안전 및 승차감에 미치는 영향이 크고, 소음 진동의 주요원인으로 작용한다. 또한 레일마모가 발생할 경우 궤도구조의 파괴를 촉진시킴으로써 차량 및 궤도유지보수비를 크게 증가시킨다. 따라서 구간 특성 및 환경 영향 인자 등 현장에서 발생하는 마모 원인을 체계적으로 분석함으로써 마모를 저감할 수 있도록 차량운행 조건과 선로선형 및 궤도구조를 설계하는 것은 중요한 과제이다. CART(Classification And Regression Tree; 분류와 회귀나무) 분석은 패키지화된 좋은 분류 및 예측도구 기법으로 나무의 상위 분리수준에서 일반적으로 나타나는 가장 중요한 입력변수들을 사용하는 등의 입력변수를 선정하는 경우 매우 유용하다. 본 연구에서는 다변수 구간특성 및 환경인자를 고려한 검측 자료 상관관계 분석을 위한 회귀 나무기반 모델(TBM: Tree Based Model) 분석 수행을 위해 지하철 2호선 마모 데이터와 마모 데이터에 영향을 미치는 각종 다변수 구간특성 및 환경인자를 사용하였다. 2호선 지하철의 구간특성 인자 및 환경인자는 레일의 종류, 레일의 위치, 도상, 곡률반경, 캔트 슬랙 및 운행 일수 등으로 구분하였다. 레일의 종류는 ks-50kg과 ks-60kg 두 종류의 레일이 있으며, 레일의 위치는 지상과 지하로 크게 구분할 수 있다. 도상은 콘크리트 도상, 자갈 도상과 일부 구간의 방진상 콘크리트 도상으로 구분할 수 있으며, 곡률반경은 직선구간과 완화곡선 구간 및 최소 250m부터 627m까지 분포된 원 곡선 구간으로 구분할 수 있다. 캔트 간격은 최소 96cm 부터 120cm 간격으로 구분하며, 슬랙은 5~9cm에 분포하고, 운행 기간은 해당 기간 동안 유지보수 이력이 없는 구간을 선정하여 2005년부터 2006년까지 4번에 걸쳐 검측된 지하철 2호선 내선 마모데이터를 사용하였다. 총 X1부터 X7까지 총 7개의 구간특성 또는 환경특성을 영향인자로 선정하였으며, 이러한 영향인자에 의해 결정되는 종속 인자로 Y1인 직마모와 Y2인 측마모를 선정하여 이 중 실질적으로 지하철 궤도의 성능 평가에 주요 판단인자로 사용되는 측마모와 구간특성 및 환경영향인자와의 상관관계 분석을 수행하였다. 해당 마모 데이터가 검측되는 기간 동안 유지보수 이력이 없는 12272 point의 데이터를 검출하였고 CART 프로그램을 이용하여 데이터를 분석하였으며, CART 프로그램의 해석을 위해 종속변수인 직마모량은 각 검측 지점의 마모량에 해당하는 등급으로 변환하여 분석을 수행하였다. 레일의 마모에 영향을 미치는 구간특성 및 환경인자와 종속 변수로 사용된 레일의 마모량 사이의 CART를 이용한 상관관계 분석은 실제 구조물에서 영향인자간의 상관 관계와 유사하며, 추후 연구에서는 이를 바탕으로 하여 정량화된 검측 데이터를 종속변수로 하여 구간특성 또는 환경인자 등 외부 영향인자를 고려한 궤도 검측데이터와의 상관관계 분석을 수행할 계획이다.

  • PDF

A Dynamic Behavior Evaluation of the Curved Rail according to Lateral Spring Stiffness of Track System (궤도시스템의 횡탄성에 따른 곡선부 레일의 동적거동평가)

  • Kim, Bag-Jin;Choi, Jung-Youl;Chun, Dae-Sung;Eom, Mac;Kang, Yun-Suk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.517-528
    • /
    • 2007
  • Domestic or international existing researches regarding rail damage factors are focused on laying, vehicle conditions, driving speed and driving habits and overlook characteristics of track structure (elasticity, maintenance etc). Also in ballast track, as there is no special lateral spring stiffness of track also called as ballast lateral resistance in concrete track, generally, existing study shows concrete track has 2 time shorter life cycle for rail replacement than ballast track due to abrasion. As a result of domestic concrete track design and operation performance review, concrete track elasticity is lower than track elasticity of ballast track resulting higher damage on rail and tracks. Generally, concrete track has advantage in track elasticity adjustment than ballast track and in case of Europe, in concrete track design, it is recommended to have same or higher performance range of vertical elastic stiffness of ballast track but domestically or internationally review on lateral spring stiffness of track is very minimal. Therefore, through analysis of service line track on site measurement and analysis on performance of maintenance, in this research, dynamic characteristic behaviors of commonly used ballast and concrete track are studied to infer elasticity of service line track and experimentally prove effects of track lateral spring stiffness that influence curved rail damage as well as correlation between track elasticity by track system and rail damage to propose importance of appropriate elastic stiffness level for concrete and ballast track.

  • PDF

Helmholtz Coil and Performance of Magnetic Compass (인공자장발생장치와 자기 컴퍼스의 성능)

  • Ahn, Young-wha;Jeong, Kong-heun;Ahn, Jang-young;Sin, Hyeong-il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • In order to furnish the fundamental data for the domestic production of magnetic compass and the prescription of standardization about it in Korea, authors made the helmholtz coil and investigated the characteristics of them. Subsequently, the damping curves of T190 and T165 compasses in the helmholtz coil were measured and analyzed the performance of those compass. The results obtained are as follows; 1. The relation between electric current (I sub I) to flow in the helmholtz coils, that the thickness of coil is 1mm, diameter 1m, winding number 117, and intensity of magnetic field is presented as follows. Vertical magnetic force: Z(Gauss)=0.34+1.506 I sub(i) Horizontal magnetic force: H(Gauss)=0.183+1.506 I sub(i) 2. Period of T190 compass is longer than T165 compass in all horizontal magnetic force. In the amplitude, the former is larger than the latter above 0.08 Gauss, but this phenomenon is opposed to that below 0.08 Gauss. 3. As the porizontal magnetic force is intensive, period of magnetic compass is short, amplitude is large, and damping degree and damping factor are small. The time elapsed to the principal points of damping curve is proportional to the -0.65 power of the horizontal magnetic force.

  • PDF

Simulation of Noise and Vibration around the Improved Turnout System (개량분기기 인근의 소음진동 시뮬레이션)

  • Eum, Ki-Young;Um, Ju-Hwan;Lee, Chin-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • A turnout system which permits trains to pass from one track to another is a combination of the switch, the crossing, lead rails which are necessary to connect the switch and the crossing, two guard rails and a switch machine for operating the switch. A turnout is the sole moving part among the railway components and has complex configuration, so the safety has always been raised an issue. In Korea, it is planned to adopt the high speed tilting train, which operates at the maximum speed of 200km/h, at conventional lines by the year of 2010. However, for the application of the tilting train to conventional lines, it is prerequisite to establish a stable turnout system allowing the tilting train to pass through it without reducing speed. Therefore, the improved turnout system for the speed-up of conventional lines has been developed and the prototype of the turnout system has been constructed. In this study, simulation of noise and vibration around the improved turnout system was performed in order to predict the generation level of noise and vibration due to passing of the tilting train through the turnout system.

  • PDF

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.