• 제목/요약/키워드: 고 전송율

검색결과 153건 처리시간 0.021초

GNSS 기반의 고감도 수신기 아키텍처 설계 및 성능 향상에 관한 연구 (A Study for Design and Performance Improvement of the High-Sensitivity Receiver Architecture based on Global Navigation Satellite System)

  • 박지호;오영환
    • 대한전자공학회논문지TC
    • /
    • 제45권4호
    • /
    • pp.9-21
    • /
    • 2008
  • 이 논문은 위성항법시스템의 문제점들을 해결하기 위하여 GNSS 기반의 RF 수신단과 고정밀 측위 아키텍처 그리고 고감도 측위 아키텍처를 제안하였다. GNSS 기반의 RF 수신단 모델은 기존 GPS와 향후 사용되어질 갈릴레오의 항법정보데이터를 동시에 수신할 수 있는 구조를 가져야 한다. 따라서 GPS의 L1대역인 1575.42MHz와 갈릴레오의 El대역인 1575.42MHz, E5A대역인 1207.1MHz 그리고 E5B대역인 1176.45MHz를 동시에 수신할 수 있는 다중 밴드로 구성하였다. 고정밀 측위 아키텍처는 기존 상관기 구조가 가지고 있는 Early코드, Prompt코드, Late코드를 사용하는 1/2칩 이격 구조가 아닌 Early_early코드, Early_late코드, Prompt코드, Late_early코드, Late_late 코드 구조의 상관기를 제안하였다. 이렇듯 1/4칩 이격의 상관기 구조를 제안하여, 위성항법시스템으로부터 송신되는 신호의 부정확성으로 인해 생기는 C/A코드와의 동기 문제를 해결하였다. C/A코드와의 동기 문제는 차량용 항법시스템의 동기 획득 지연 시간 문제가 발생되어, 수신기의 성능 저하를 가져온다. 다음으로 고감도 측위 아키텍처는 20개의 코럴레이터(correlator)를 사용하여 비대칭 구조로 설계하여 수신 증폭률을 최대화하고, 잡음을 최소화하여 수신율을 향상시키도록 하였다. 위성항법시스템은 동일한 C/A코드를 20번 반복하여 전송한다. 따라서 동일한 C/A코드를 모두 사용할 수 있는 구조를 제안하였고, 적응형 구조를 가지고 있어, 주변 환경에 따라 코럴레이터의 수를 제한할 수 있어, 불필요한 시스템의 동작 지연 시간을 줄일 수 있다. 이러한 구조의 사용으로 동기 획득 지연 시간을 줄일 수 있고, 동기 추적의 연속성을 보장할 수 있다. 이는 위성항법시스템의 수신기 성능을 향상시키는 결과를 가져온다.

NPC의 방사선치료시 3D-CRT, IMRT, Tomotherapy의 유용성 분석 (The Usability Analysis of 3D-CRT, IMRT, Tomotherpy Radiation Therapy on Nasopharyngeal Cancer)

  • 송종남;김영재;홍성일
    • 한국방사선학회논문지
    • /
    • 제6권5호
    • /
    • pp.365-371
    • /
    • 2012
  • 암환자의 방사선 치료기술은 3D-CRT, IMRT, Tomotherapy로 발전해 가고 있으며 이 3가지의 치료법은 임상에서 가장 많이 쓰이는 방사선 치료기술이다. 본 연구에서는 3D-CRT, IMRT(Linac Based) 그리고 Tomotherapy 치료시 정상조직과 종양조직의 선량분포를 비교해 보고자 한다. 실험방법으로는 조직 등가물질로 이루어진 인체모형팬톰 (Anthropomorphic Phantom)을 대상으로 CT simulation을 실시(Slice Thickness : 3mm)하여 획득된 영상에 GTV를 비인두 부위로 정하고 PTV는 GTV에 2mm정도의 영역을 포함시켜 치료계획용 장비(ADAC-Pinnacle3. Tomotherapy Hi-Art System)으로 전송한다. 치료계획은 PTV의 처방선량을 7020 cGy로 설정한 후 PTV에 부여되는 선량값과 정상조직인 이하선, 구강, 척수에 흡수되는 선량값을 산출하였다. 실험결과 PTV에 분포된 선량값은 Tomotherapy, Linac Based - IMRT, 3D-CRT가 각각 6923 cGy, 6901 cGy, 6718 cGy의 선량분포를 보여 종양조직 처방선량값인 7020 cGy의 95%이상 부여되어 종양제어측면(TCP)에 부합하였으며 정상조직(이하선, 구강, 척수)은 각각 1966 cGy (Tomotherapy), 2405 cGy(IMRT), 2468 cGy(3D-CRT)[이하선], 2991 cGy(Tomotherapy), 3062 cGy(IMRT), 3684 cGy(3D-CRT)[구강], 1768 cGy(Tomotherapy), 2151 cGy(IMRT), 4031 cGy(3D-CRT)[척수]의 선량이 분포되었으며 이는 정상조직 합병증발생율(NTCP)의 선량을 넘지 않았다. 모든 치료기법에서 종양조직과 정상조직이 선량분포측면에 부합하였다. 3D-CRT의 치료법이 선량분포 면에서 가장 양호하지 않았지만 종양조직제어율(TCP)과 정상조직합병증율(NTCP)을 고려해 볼 때 기준치를 벗어나지 않는 선량이 분포 되었다. 상대적으로 선량분포가 우수한 Tomotherapy, IMRT는 오랜 치료시간 때문에 폐쇄공포증환자나 호흡불량 환자가 치료받는데 어려울 수 있다. 특히 토모테라피의 경우 치료 전에 고에너지 컴퓨터 단층촬영을 매일 실시하기 때문에 불필요한 방사선 피폭을 초래할 수 있다. 결론적으로 Tomotherapy가 선량분포에서 가장 우수한 치료기법으로 평가되었으며, IMRT, 3D-CRT의 순으로 방사선치료의 적합성을 보였다. 하지만 실제 치료시 환자의 상태에 따라 제한적으로 3차원 입체조형치료를 시행하여도 무방하다고 사료된다.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.