• Title/Summary/Keyword: 고체추진제

Search Result 340, Processing Time 0.028 seconds

A Study of Fuel-rich Solid Propellant Characteristic for Boron-bead Particle Size (금속연료인 과립화붕소의 입도에 따른 연료과농 고체 추진제 특성 연구)

  • Won, Jongung;Choi, Sunghan;Lee, Wonbok;Kim, Junhyung;Hwang, Gabsung;Park, Bocksun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.12-18
    • /
    • 2014
  • A study of gas generator Fuel-Rich propellant for air-breathing propulsion system was performed in this paper. General solid propellant comprises a mean of 60% or more oxidizing agents. but, to develop the fuel-rich solid propellant increased the content of the metal fuel and reduced the content of the oxidizing agents by approximately 30%. Very high amount of heat per volume of fuel into the metal having the Boron was used. Amorphous Boron Powder was applied to propellant as beads type and it allowed to design more amount of metal fuel in the fuel-rich propellant. And the Combustion characteristics and properties of fuel-rich solid propellant according to the Boron-bead sizes were confirmed.

Evaluation of Uncertainty in Burning Rate Measurement of Solid Propellant using Ultrasound (초음파를 이용한 고체추진제 연소속도 측정 불확실도 평가)

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The advantage of ultrasonic burning rate measurement of solid propellant is measuring burning rates with wide range of pressure in a single test. In the ultrasonic method, instantaneous thickness of solid propellants as function of pressure or time were measured using time of flight(TOF) of ultrasonic signals. So, uncertainties of the measured burning rates by ultrasonic method have to evaluate with variation of pressure, TOF and initial propellant thickness. In this study, we evaluated uncertainties of ultrasonic method for measuring burning rates on the types 317 and the 318 propellants.

  • PDF

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

A Study on Dual Thurst Solid Rocket Motors with High/Low Burning Rate Propellants (이중추력형 추진기관 개발 기초연구)

  • Song, Jong-Kwon;Lee, Jun-Ho;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.664-667
    • /
    • 2010
  • Solid rocket propulsion systems are generally used for tactical missiles due to the structural and operational simplicity. Nevertheless, various kinds of design factors including outer diameter, length, weight, loading efficiency of propellant grain effects to thrust performance. Dual thrust is beneficial to range extension and terminal velocity increasement. But loading efficiency becomes low in case to obtain dual thrust performance by burning surface control. So, It is predicted to be reasonable to obtain dual thrust performance with high/low burning rate propellants. This study is on internal ballistic analysis and ground test to confirm dual thrust performance.

  • PDF

Review of Solid Propellant Continuous Mix Process (고체 추진제 연속식 혼화 공정 고찰)

  • Jung, Se-Yong;Won, Jong-Wan;Choi, Young-Seok;Hwang, Hyung-No;Yoo, Kyu-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.197-200
    • /
    • 2007
  • This paper presents solid propulsion manufacturing processes. Solid rocket motors propellants are made of several batches of propellant being mixed in mixers and made of continuous mixers. This paper discusses the technology of continuous mix process of Aerojet, US and SNPE Materiaux Energetiques, France.

  • PDF

Research Activities of Electrically Controlled Extinguishable Solid Propellants (전기제어 소화성 고체 추진제 연구 현황)

  • Kim, Chang-Kee;Min, Byoung-Sun;Yoo, Ji-Chang;Ryoo, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.464-466
    • /
    • 2011
  • This technical paper presents a new solid propellants family. The views are based on open literature and patents recently. Electrically controlled extinguishable solid propellants (ESCSP) are capable of multiple ignitions, extinguishments and throttle control by the application of electrical power. Both core and end burning no moving parts ECESP grains/motors to three inches in diameter have now been tested. Ongoing research has led to a newer family of even higher performance ECESP providing up to 10% higher Isp, manufacturing ease, and significantly higher electrical conduction.

  • PDF

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

A study on ultrasonic signal denoising techniques for improving ultrasonic burning rate measurements of solid propellants (고체추진제 연소속도 측정의 정밀도 향상을 위한 초음파 신호 잡음제거 기술 연구)

  • Jeon, Su-Kyun;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.200-203
    • /
    • 2009
  • Ultrasonic techniques have the advantage of determining the burning rates with wide range of pressure in only a single test. However, ultrasonic techniques have a drawback, which is that they are using high frequency transducers and it is easily affected by noise. Therefore, ultrasonic measurement method needs noise reduction algorithm to improve or grantee accuracy of burning rate measurements of solid propellants using ultrasound. Thus, in the present study, we propose a noise reduction method of measured ultrasonic signals by applying wavelet shrinkage.

  • PDF

Analysis for Steady-State and Transient Combustion Characteristic of Solid Propellant Rocket Engine (고체 추진제 로켓엔진의 정상 및 비정상 연소특성 해석)

  • 김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.233-239
    • /
    • 2003
  • The present study has numerically investigated the combustion processes in the solid propellant rocket engine. The two step global reaction model for condensed phase and five step global reaction mechanism for gas phase are adopted to predict the detailed flame structure near double-base solid propellant surface. The turbulence-chemistry interaction is represented by the PaSR(Partially Stirred Reactor) model. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number k-$\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes and transient behavior of pressure and temperature fields in the solid propellant rocket engine.

  • PDF

Study of Aluminum Agglomeration Model During Solid Propellant Combustion (고체추진제 연소 중 알루미늄 응집 모델 연구)

  • Yoon, Jisang;Lee, Kookjin;Kim, Daeyu;Park, Namho;Ko, Seungwon;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.78-86
    • /
    • 2019
  • Aluminum, which is a metal fuel contained in the composite solid propellant, is not ignited and burned on the combustion surface by the oxide film, and it partially melts and coalesces with surrounding aluminum particles. For the evaluation and design of the propellant performance, modeling was performed to predict the size and distribution of agglomerated particles, and the size and distribution of agglomerates were compared and verified through experiment. The predicted values showed the tendency to decrease with pressure as in the experiment, but the error increased as the pressure increased. The agglomerated particle distribution graph showed a difference in the volume fraction although the diameter at the peak was the same.