• Title/Summary/Keyword: 고체추진기관

Search Result 217, Processing Time 0.025 seconds

Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2) (황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2))

  • Park, Sungjun;Kim, Kyungmin;Park, Jungho;Rho, Taeho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • The mechanical properties of the propellant with yellow iron oxide were slightly increased compared to the propellant with red iron oxide. The propellant with yellow iron oxide used two types of AP. As the ratio of small particles of AP increased, the burning rate increased. The propellant may be applied to the propellant under operating conditions of 17.5 mm/sec or less having a pressure index of 0.5. The burning rate downs in the mixer scale-up. The stress at maximum load of propellant decreased and the strain at maximum load increased in the mixer scale-up. The yellow iron oxide did not affect the adhesive force between the insulation/liner/propellant.

Wear Properties of Seal Graphite at Elevated Temperature (기밀소재 Graphite의 고온마모 특성에 관한 연구)

  • Yang, Ho-Young;Kim, Jaehoon;Ha, Jaeseok;Kim, YeonWook;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • The graphites as airtight structure seals prevent high-pressure and high-temperature gas from flowing into actuator of propulsion system and generate lubricant film during wear procedure to assist lubricant and sealing. In this study, the tribological characteristics of the graphite in high-temperature are evaluated. In order to evaluate the tribological characteristics of high density graphite(HK-6), variables which are temperature, sliding speed and contact load are set. this study suggest optimized environment conditions through the wear properties of graphite. Consequeantly, high temperature is better than at room temperature to generate lubricant film, so that friction coefficient of graphite is lower at high temperature than at room temperature.

Heat Transfer Analysis for Variable Thrust Control System Using 1-Way Coupling (일방향 연계를 활용한 연속가변 추력제어 시스템의 열전달 해석)

  • Lee, JiHun;Jang, HanNa;Kim, GyuBin;Cho, JinYeon;Kawk, JaeSu;Ko, JunBok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.388-391
    • /
    • 2017
  • In this study, heat transfer analysis of variable thrust control system have been conducted by using commercial CFD code and FEM code. We Carried out computational fluid dynamics analysis to obtain the temperature and convective heat transfer coefficient of hot gas of variable thrust control system. Data are used as boundary condition for heat transfer analysis using mapping method. Temperature of O-ring for sealing was predicted

  • PDF

A study on internal flow field of supersonic nozzle by needle type pintle position (Needle형 Pintle의 위치에 따른 초음속 노즐 내부 유동장 연구)

  • Lee, Ji-Hyung;Kim, Jung-Keun;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • Internal flow field of supersonic nozzle with pintle, which control thrust of solid rocket motor, is very complicated by pintle tip shape and contour of nozzle. For studying of pintle nozzle performance by effects of internal flow field variation with pintle position, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, three types of internal shocks exists in the pintle nozzle and oblique shock is oscillated by pintle position

  • PDF

A Study on the Thermal Protection Performance of Elastomeric Insulators in Different Mixing Environments (탄성내열재 배합 환경에 따른 내열 성능 변화에 관한 연구)

  • Kim, Namjo;Seo, Sangkyu;Kang, Yoongoo;Go, Cheongah
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.108-115
    • /
    • 2019
  • The thermal response of elastomeric insulators used as protection against high-temperature and high-pressure combustion gases varies depending on their composition and thermal environment conditions. In this paper, the thermal response characteristics of elastomeric insulators in different mixing environments were compared. Tests to determine thermal protection performance were carried out using a thermal protection rubber evaluation motor(TPREM), combustion gas velocities of 20 m/s and 100 m/s were tested at a chamber pressure of 1,000 psig. The pressure time curve of the chamber, the temperature time curve of the internal materials, the residual thickness and the thermal destruction depth of the test specimens were obtained. The results showed that the thermal protection performance of elastomeric insulators in different mixing environments was similar.

Reliability evaluation plan of Rocket motor system (고체 추진기관 시스템의 신뢰성 평가 방안)

  • Kwon, Tag-Man;Jung, Ji-Sun;Shim, Hang-Geun;Jang, Ju-Su
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.399-407
    • /
    • 2011
  • Reliability evaluation of One-Shot system which flies at speed of Mach must be evaluated as the result of many firing tests. But many firing tests are impossible because of budget deficit. Consequently the reliability prediction which substitutes firing tests is used. The accuracy of reliability prediction is decided according to a quantity of accumulated test data. If the test data is insufficient, the direction of prediction can not be set. So we propose the reliability prediction method which applies MIL-HDBK-217 Plus. MIL-HDBK-217 Plus is described about reliability prediction method without sufficient test data. So we apply MIL-HDBK-217 Plus to the rocket motor system, and we accomplish a modeling and a reliability prediction about the system.

Measurement of Performance of High Speed Under Water Vehicle by Using Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.131-136
    • /
    • 2017
  • High speed under water vehicle by using solid rocket motor, which is a natural cavitation type, was tested. The vehicle's speed and running distance was measured, and pressure sensors installed on the surface of the vehicle show pressure-time history of pressures according to the development of the supercavitation. Underwater cameras installed on the wall of the test pool recorded whole processes from the onset of the supercavitation to fully developed one. CNU-SuperCT based on 2-dimensional inviscid theoretical analysis was used to simulate the test result. In consideration of CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Also, pictures from underwater cameras support the test results.

  • PDF

Measurement of Performance of High Speed Underwater Vehicle with Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.12-17
    • /
    • 2018
  • A natural cavitation-type high-speed underwater vehicle with solid rocket motor is tested, and its speed and running distance are measured. The outputs from pressure sensors on the surface of the vehicle reveal a pressure-time history reflecting the development of supercavitation. Underwater cameras installed on the wall of the test pool record the entire process from the onset of supercavitation to its full development. CNU-SuperCT, based on two-dimensional inviscid theoretical analysis, is used to simulate test results. Considering CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Additionally, pictures from underwater cameras support the test results.

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

An Evaluation of Structural Characteristics and Integrity for Rocket Motor Case according to Dome Types (돔 형상에 따른 연소관의 구조 특성 및 안전성 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Won-Hoon;Koo, Song-Hoe
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Elastic-Plastic structural analysis was performed to evaluate structural characteristic and integrity for rocket motor case of solid propulsion system. The structural analyses were compared and evaluated using the simplified 2-D axisymmetric model and 3-D full model for rocket motor case with torispherical dome type. And pre-tension load for bolt model was considered in structural analysis. The results of displacement and stress for the simplified 2-D axisymmetric model and 3-D full model were in an good agreement with each other. Therefore, the simplified 2-D axisymmetric model for rocket motor case was recommended to verify quickly the structural integrity and save the modeling and calculating time in initial design stage. Also, the structural characteristic and integrity for rocket motor case according to 5 dome types was evaluated to select the optimal dome shape.

  • PDF