• Title/Summary/Keyword: 고체산화물전지

Search Result 467, Processing Time 0.03 seconds

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Characteristics of (Ca,Sr)-doped LaCrO3 Coating Layer for Ceramic Interconnect of Solid Oxide Fuel Cell (고체산화물 연료전지용 (Ca,Sr)도핑된 LaCrO3계 세라믹 연결재 코팅층의 특성 연구)

  • Lee, Gil-Yong;Peck, Dong-Hyun;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • Using Pechini method, we synthesized the $La_{0.6}Ca_{0.41}CrO_3$ (LCC41) and $La_{0.8}Sr_{0.05}Ca_{0.15}CrO_3$ (LSCC) powders for slurry dip coating, and $La_{0.75}Ca_{0.27}CrO_3$ (LCC27) powder for air plasma spray coating. The sintering property of the powders and their coating properties were investigated. The average particle sizes of the LCC41, LSCC, LCC27 were 0.6, 0.9, $1.5{\mu}m$, respectively. The relative density of LCC41 bulk was to be found about 98%. The LSCC coating on anode support prevented Ca migration of the coated LCC41 on the anode some or less, which was confirmed from EDS result. The air plasma spray-coated LCC27 with the dip-coated LCC41 were more dense and showed better electrical conductivity than those of the air plasma spray-coated LCC27 and the dip-coated LSCC and LSCC41. The LCC41 and LCC27 showed good electrical conductivities, but the LSCC had a poor electrical conductivity probably due to low sinterability

Effect of the A-site Deficieny of ABO3 type (La0.75Sr0.25)1-xFeO3-δ Used as Cathode Materials for SOFC on the Electrode Properties (고체산화물 연료전지의 공기극용 ABO3구조의 (La0.75Sr0.25)1-xFeO3-δ의 A-site변화에 따른 전극 특성 연구)

  • Park, Ju-Hyun;Lee, Seung-Bok;So, Hui-Jeong;Lim, Tak-Hyoung;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • We synthesized and investigated $(La_{0.75}Sr_{0.25})_{1-x}FeO_{3-\delta}$ perovskite oxides having different stoichiomety (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The electrochemical performances of the synthesized powders were investigated by AC impedance spectroscopy. Both the electric conductivity and the electrochemical performance showed the highest properties at the stoichiometry x = 0.02. Finally, we concluded that the variation of A-site deficiency results in the variation of the amount of oxygen vacancy and micro structure, which leads to the variation of electric conductivity and polarization resistance.

Cathode Characteristics in the Synthesis of $(La,\;Sr)MnO_{3+{\delta}$ of Precursor ($(La,\;Sr)MnO_{3+{\delta}$ 합성에 있어서 출발물질에 따른 양극특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Ji, Mi-Jung;Choi, Byung-Hyun;Park, Sang-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.360-363
    • /
    • 2006
  • We synthesized $(La,\;Sr)MnO_{3+{\delta}$ as a cathode for SOFC by glycine nitrate process(GNP) and knew the different properties of $(La_{1-x}Sr_x)MnO_3$ by using nitrate solution and oxide solution as starting material. In case of using nitrate solution as a starting material, main crystal phase peak of $LaMnO_3$ increased as Sr content added up and a peak of $Sr_2MnO_4\;and\;La_2O_3$ was showed as a secondary phase. We added Mn excess to control a crystal phase. In this case, the electrical conductivity had a high value 210.3S/cm at $700^{\circ}C$ On the other side, when we used oxide solution as a starting material, we found main crystal phase of $LnMnO_3$ to increase as Sr content added up and a peak of $La_2O_3$ as a secondary phase. Similary, we added Mn excess to control a crystal phase in this case. We knew $(La,\;Sr)MnO_3$ powder to sinter well and the electrical conductivity of the sintered body at $1200^{\circ}C$ for 4hrs was 152.7s/cm at $700^{\circ}C$. The sintered $(La,\;Sr)MnO_3$ powder at $1000^{\circ}C$ for 4hrs got the deoxidization peak, depending on the temperature md in case of using nitrate solution as a start ing material the deoxidization peak was showed at $450^{\circ}C$ which is lower than used a oxide solution as a starting material. As a result, when $(La,\;Sr)MnO_3$ powder was synthesized to add Mn excess and to use nitrate solution as a starting material, we found it to have the higher deoxidization property and considered it as a cathode for m properly. And we found it to have different electrical conduct ivity the synthesized $(La,\;Sr)MnO_3$ powder by using different start ing materials like nitrate solution and oxide solution which influence a sintering density and crystal phase.

  • PDF

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process (Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가)

  • Ok, Kyung-Min;Kim, Kyeong-Lok;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hee-Dae;Sung, Youl-Moon;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

Study of Optimization and Characteristics of PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) for IT-SOFC (중저온형 SOFC를 위한 PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) 공기극 물질의 특성 및 최적화께 관한 연구)

  • Park, Kwang-Jin;Lee, Chang-Bo;Kim, Jung-Hyun;Baek, Seung-Wook;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • [ $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ ] is a good candidate cathode material for IT-SOFC(intermediate temperature solid oxide fuel cell) because of high MIEC(mixed ionic electronic conductor) conductivity. In this study, the characteristics of PSCF3737 was investigated and optimizations of sintering temperature and thickness for $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ was carried out. Impedance responses were divided into two parts by frequency region. Middle frequency part (${\sim}10^2\;Hz$) was concerned with oxygen reduction reaction on surface and low frequency part (${\sim}10^{-1}\;Hz$) was related with oxygen diffusion. The reasonable sintering temperature and thickness of cathode were $1200^{\circ}C$ and about $27\;{\mu}m$ with regard to EIS(electrochemical impedance spectroscopy). ASR(areas specific resistance) of optimized cathode is $0.115\;{\Omega}\;cm^2$ at $700^{\circ}C$.

A study on characteristics of SOFC/GT system for the supply gas flow rates (공급가스 유량에 따른 SOFC/GT 시스템 특성에 관한 연구)

  • Park, Sang-Kyun;Lee, Joo-Hee;Park, Geong-Dae;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.765-772
    • /
    • 2015
  • In this research, the characteristics of SOFC/GT (Solid Oxide Fuel Cell/Gas Turbine) system temperature, stack power and system efficiency for flow rates of air, CH4 and water supplied to SOFC stack have been investigated. The temperature of the gas supplied to cathode and anode of SOFC stack in the SOFC/GT system are maintained by utilizing exhaust gas without the addition of external heat source. As a result, within the scope of this study, temperatures of gas supplied to cathode and anode of SOFC stack were maintained at 1000 (K) by utilizing the exhaust gas of the SOFC/GT system without the addition of external heat source. The system efficiency is increased with increase of air flow rate supplied to the stack and with decrease of $CH_4$ flow rate supplied to the stack. In addition, it can be found that the flow rate of the exhaust gas supplied to the turbine had a significant effect on the system efficiency. And the efficiencies of SOFC stack and SOFC/GT system depending upon various operating conditions of the SOFC/GT system is 51~57% and 57~73%, respectively.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.