• 제목/요약/키워드: 고차원 데이터

검색결과 254건 처리시간 0.027초

대용량 데이터베이스에서 다차원 인덱스를 사용한 효율적인 다단계 k-NN 검색 (Efficient Multi-Step k-NN Search Methods Using Multidimensional Indexes in Large Databases)

  • 이상훈;김범수;최미정;문양세
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.242-254
    • /
    • 2015
  • 본 논문에서는 다차원 인덱스 기반 다단계 k-NN 검색의 성능 향상 문제를 다룬다. 기존 다단계 k-NN 검색에서는 고차원 객체의 저차원 변환으로 인한 정보 손실로 k-NN 질의 결과 매우 큰 허용치(검색 범위)가 결정되어 범위 질의 결과로 많은 후보가 검색된다. 또한, 많은 후보는 후처리 과정에서 매우 많은 I/O 및 CPU 오버헤드를 발생시킨다. 본 논문에서는 이와 같은 고찰에 기반하여 범위 질의의 허용치를 줄여 후보 개수를 줄이고 이를 통해 성능을 향상시키는 방법을 제안한다. 먼저, k-NN 질의 결과로 결정된 허용치를 고차원 및 저차원 객체간 거리 비율로 강제 축소하여 범위 질의에 사용하는 허용치 축소 (근사적) 해결책을 제안한다. 다음으로, k-NN 질의 계수 k 대신 c k 를 사용하여 얻은 보다 타이트(tight)한 허용치로 범위 질의를 수행하는 계수 제어 (정확한) 해결책을 제안한다. 실제 객체 데이터를 사용하여 실험한 결과, 제안한 두 가지 해결책은 기존 다단계 k-NN 검색에 비해 후보 개수와 검색 시간 모두를 크게 향상시킨 것으로 나타났다.

고차원 공간에서 효과적인 차원 축소 기법 (An Effective Method for Dimensionality Reduction in High-Dimensional Space)

  • 정승도;김상욱;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.88-102
    • /
    • 2006
  • 멀티미디어 정보 검색에서 멀티미디어 데이터는 고차원 공간상의 벡터로 표현된다. 이러한 특정 벡터를 효율적으로 검색하기 위하여 다양한 색인 기법이 제안되어 왔다. 그러나 특정 벡터의 차원이 증가하면서 색인 기법의 효율성이 급격히 떨어지는 차원의 저주 문제가 발생한다. 차원의 저주 문제를 해결하기 위하여 색인하기 이전에 원 특정 벡터를 저차원 공간상의 벡터로 사상하는 차원 축소 기법이 제안된 바 있다. 본 연구에서는 벡터의 놈과 각도 성분을 이용하여 유클리드 거리를 근사하는 함수를 기반으로 하는 새로운 차원 축소 기법을 제안한다. 먼저, 유클리드 거리 근사를 위하여 추정된 각도의 오차의 발생 원인을 분석하고 이 오차를 줄이기 위한 기본 방향을 제시한다. 또한, 고차원 특정 벡터를 다수의 특징 서브 벡터들의 집합으로 분리하고 각 특징 서브 벡터로부터 놈과 각도 성분을 근사하여 차원을 축소하는 새로운 기법을 제안한다. 각도 성분을 정확하게 근사하기 위해서는 올바른 기준 벡터의 설정이 필수적이다. 본 연구에서는 최적 기준 벡터의 조건을 제시하고, Levenberg-Marquardt 알고리즘을 이용하여 기준 벡터를 선정하는 방법을 제안한다. 또한, 축소된 저차원 공간상의 벡터틀을 위한 새로운 거리 함수를 정의하고, 이 거리 함수가 유클리드 거리 함수의 하한 함수가 됨을 이론적으로 증명한다. 이는 제안된 기법이 착오 기각의 발생을 허용하지 않으면서 효과적으로 차원을 줄일 수 있음을 의미하는 것이다. 끝으로, 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.

주기적 편중 분할에 의한 다차원 데이터 디클러스터링 (Declustering of High-dimensional Data by Cyclic Sliced Partitioning)

  • 김학철;김태완;이기준
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권6호
    • /
    • pp.596-608
    • /
    • 2004
  • 디스크 입출력 성능에 의해서 많은 영향을 받는 대용량의 데이타를 저장하고 처리하는 시스템에서 데이타를 다수의 병렬 디스크에 분산 시켜 저장한 후 질의 처리 시 디스크 접근 시간을 감소시키기 위한 노력들이 많이 행해졌다. 대부분의 이전 연구들은 데이타 공간이 정형의 그리드 형태로 분할되어 있다는 가정 하에 각 그리드 셀에 대해서 효과적으로 디스크 번호를 할당하는 알고리즘 연구에 치중하였다. 하지만, 그리드 형태의 분할은 저차원 데이타에 대해서는 효과적이지만 고차원 데이타에 대해서는 우수한 디스크 할당 알고리즘을 적용하더라도 디클러스터링에 의한 성능 향상을 이룰 수가 없다. 그 이유는 그리드 분할 방법은 데이타 분포 비율에 관계없이 전체 데이타 공간을 동일한 비율로 분할하기 때문이다. 고차원 데이타는 대부분 데이타 공간의 표면에 존재한다. 본 논문에서는 이와 같은 현상을 고려하여 데이타 표면으로부터 주기적으로 편중 분할하는 알고리즘을 이용한 새로운 디클러스터링 알고리즘을 제시한다. 다양한 실험 결과에 의하면 표면으로부터 주기적으로 편중 분할하는 방법은 차원이 증가할 수록, 또한 질의 크기가 증가할 수록 그리드 형태의 분할에 비해서 질의를 만족하는 데이타 블록의 수를 현저히 감소시킬 수 있다. 본 논문에서는 분할 결과 데이타 블록들의 배치(layout)를 이용한 디스크 번호 할당 알고리즘들을 제시하였다. 우리는 제시한 알고리즘의 성능을 보이기 위해서 다양한 차원과 디스크 수에 대해서 여러 가지 실험을 하였다. 본 연구에서 제시한 디스크 할당 알고리즘은 절대 최적의 디스크 할당 방법에 비해서 추가적인 디스크 접근 횟수가 10번을 넘지 않는다. 디클러스터링 알고리즘의 응답 시간에 대해서 그리드 분할에 대해서 가장 좋은 성능을 보이는 것으로 알려져 있는 Kronecker sequence을 이용한 디스크 할당 알고리즘과 비교하였으며 차원이 높아짐에 따라 최대 14배까지 성능이 향상된다.

연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구 (A study on searching image by cluster indexing and sequential I/O)

  • 김진옥;황대준
    • 정보처리학회논문지D
    • /
    • 제9D권5호
    • /
    • pp.779-788
    • /
    • 2002
  • 이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 논문에서는 멀티미디어 데이터 검색에 클러스터링과 인덱싱 기법을 같이 적용하여 유사한 이미지는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축함으로써 이미지 근처의 클러스터를 찾아 빠른 검색 결과를 제공하는 유사 검색방법을 제시한다. 본 논문에서는 트리 유사 구조의 인덱스 대신 해싱 방법을 이용하며 검색시 I/O 시간을 줄이기 위해 오브젝트를 가진 클러스터 위치를 찾는데 한번의 I/O를 사용하고 이 클러스터를 읽기 위해 연속적인 파일 I/O를 사용하여 클러스터를 찾는 비용을 최소화한다. 클러스터 인덱싱 접근은 클러스터링을 생성하는 알고리즘과 해싱 기법의 인덱싱을 이용함으로써 고차원 데이터가 갖는 차원의 문제를 해결하며 클러스터링 또는 인덱싱 만을 이용하는 내용기반의 이미지 검색보다 효율적인 검색 적합성을 보인다.

아웃소싱 데이터베이스에서 집계 질의를 위한 효율적인 인증 기법 (Efficient Authentication of Aggregation Queries for Outsourced Databases)

  • 신종민;심규석
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.703-709
    • /
    • 2017
  • 아웃소싱 데이터베이스란 데이터 관리 및 질의 처리 등의 계산량이 많은 작업을 제 3자 서버에 위탁하는 것이다. 이를 통해 데이터 소유자는 비싼 인프라를 구축하지 않고 빅데이터를 관리할 수 있으며 여러 사용자로부터 받는 질의들을 빠르게 처리할 수 있다. 하지만 보안 위협이 항상 존재하는 네트워크의 특성상 제 3자 서버를 완전히 신뢰하기 어렵고, 그 서버가 처리한 결과도 신뢰하기 어렵다. 이처럼 신뢰할 수 없는 서버가 처리한 질의 결과가 정확한지 확인하는 것을 질의 인증이라고 하며 구간 질의, kNN 질의, 함수 질의 등 다양한 질의에 대한 인증 기법들이 연구되었다. 하지만 빅데이터 분석에 있어 활용도가 높은 집계 질의에 대한 깊이 있는 질의 인증 연구는 이루어지지 않았으며 기존 연구는 고차원이거나 서로 다른 값이 많은 데이터에 대해 비효율적이다. 본 연구에서는 집계 질의 인증을 위한 자료구조를 제안하고 이를 활용한 효율적인 증거 생성 방법과 증명 방법을 제안한다. 그리고 데이터의 상이 값 수, 레코드 개수, 차원 크기 등을 변경하며 진행한 실험 결과를 통해 제안한 기법의 성능이 우수함을 보였다.

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

코사인 유사도 기법을 이용한 top-k 관련쌍 검색 방법 조사 (Survey on Top-k Related Pair Search Method Using Cosine Similarity)

  • 김성철;김정환;김나영;김태훈;유환조
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.808-809
    • /
    • 2017
  • 유사도 검색은 전통적으로 데이터베이스 그리고 웹검색 분야의 핵심이었으나, 대용량 데이터의 등장으로 검색의 정확도뿐만이 아니라 효율성 측면에서의 요구가 증가하며 여전히 다양한 분야에서 활발히 연구되고 있다. 아이템간의 유사도를 측정하기 위한 방법론 중 코사인 유사도 방법론은 고차원공간에서의 활용이 유리하다는 이점 때문에 가장 널리 활용되고 있는 방법론으로, 정보검색, 장바구니 분석, 생물정보학 등 다양한 분야에서 활용되고 있다. 본 논문에서는 코사인 유사도를 소개하고, 연관성 분석 측면에서 코사인 유사도를 사용한 기존의 연구들을 소개한다.

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

고차원 데이터의 분류를 위한 서포트 벡터 머신을 이용한 피처 감소 기법 (Feature reduction for classifying high dimensional data sets using support vector machine)

  • 고석하;이현주
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.877-878
    • /
    • 2008
  • We suggest a feature reduction method to classify mouse function data sets, which integrate several biological data sets represented as high dimensional vectors. To increase classification accuracy and decrease computational overhead, it is important to reduce the dimension of features. To do this, we employed Hybrid Huberized Support Vector Machine with kernels used for a kernel logistic regression method. When compared to support vector machine, this a pproach shows the better accuracy with useful features for each mouse function.

  • PDF

고차원 스펙트라 데이터 분석을 위한 Adjusted Direct Orthogonal Signal Correction 기법 (Adjusted Direct Orthogonal Signal Correction For High-Dimensional Spectral Data)

  • 김신영;김성범
    • 대한산업공학회지
    • /
    • 제37권4호
    • /
    • pp.400-407
    • /
    • 2011
  • Modeling and analysis of high-dimensional spectral data provide an opportunity to uncover inherent patterns in various information-rich data. Orthogonal signal correction (OSC) a preprocessing technique has been widely used to remove unwanted variations of spectral data that do not contribute to prediction or classification. In the present study we propose a novel OSC algorithm called adjusted direct OSC to improve visualization and the ability of classification. Experimental results with real mass spectral data from condom lubricants demonstrate the effectiveness of the proposed approach.