• Title/Summary/Keyword: 고준위방사성폐기물 처분장

Search Result 128, Processing Time 0.023 seconds

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD (전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측)

  • Roh, Jang-Hoon;Yu, Yeong-Seok;Jang, Seung-Hyun;Park, Seon-Oh;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.429-437
    • /
    • 2012
  • This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

Current Status of the Numerical Models for the Analysis of Coupled Thermal-Hydrological-Mechanical Behavior of the Engineered Barrier System in a High-level Waste Repository (고준위폐기물처분장 공학적방벽시스템의 열-수리-역학적 복합거동 해석 모델 개발 현황)

  • Cho, Won-Jin;Kim, Jin Seop;Lee, Changsoo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • The current status of the computer codes for the analysis of coupled thermal-hydrological-mechanical behavior occurred in a high-level waste repository was investigated. Based on the reported results on the comparison between the predictions using the computer codes and the experimental data from the in-situ tests, the reliability of the existing computer codes was analyzed. The presented codes simulated considerably well the coupled thermal-hydrological-mechanical behavior in the near-field rock of the repository without buffer, but the predictions for the engineered barrier system of the repository located at saturated hard rock were not satisfactory. To apply the current thermal-hydrological-mechanical models to the assessment of the performance of engineered barrier system, a major improvement on the mathematical models which analyze the distribution of water content and total pressure in the buffer is required.

Performance Assessment for Radionuclides Transport from HLW Repository (고준위방사성폐기물 처분장으로부터 핵종이동 평가)

  • 김성기;강철형;이연명;황용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.41-46
    • /
    • 2001
  • 요오드나 세순 같은 핵종들은 고용해도 핵 종들로서 사용 후 핵연료 내 피복관 이나 연료 결정 경계면에 위치하고 있다가 고준위 방사성폐기물 처분 후 지하수가 용기를 부식시키고 용기 내부로 침투하면 고용해도를 가지고 유출된 후 공학적, 천연 방벽을 통해 최종적으로 유출되게 된다. 본 연구에서는 한국원자력연구소에서 개발한 MASCOT-K글 이용하여 고용해도 핵 종들이 조화 유출과 고용해도 유출할 경우 유출 량을 평가 분석해 보았다. 평가 결과 요오드와 같은 고용해도 핵 종인 경우 전체 핵 종 재고량의 최대 10%만이 고용해도 유출을 하지만 그 영향은 조차 유출에 비해 훨씬 중요한 것으로 판명되었다. 이러한 결과를 바탕으로 현재 국내 고 준위 처분 환경에서 보수적인 시나리오로 주목받고 있는 우물 굴착 시나리오를 대상으로 우물까지의 거리 등 입력 자료의 불확실성을 평가해 보았다. 36,000 톤의 사용 후 핵연료를 처분 대상으로 했을 때 성능 평가 결과는 현재 처분 개념이 안전함을 입증한다.

  • PDF

Study on the effective ventilation system in high-level waste disposal tunnel (고준위폐기물 처분터널 내 효율적인 환기시스템에 관한 고찰)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kim, Jin-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.363-364
    • /
    • 2014
  • 국내 에너지의 장기적인 수요상황을 볼 때 원자력 발전의 비중이 확대되는 것은 불가피 하므로 환경 친화적인 사용 후 핵연료의 관리 및 고준위 폐기물의 처분방안의 마련은 원자력의 개발만큼이나 중요하다. 이에 본 연구에서는 방사성 폐기물의 효율적인 관리와 저장 및 열제거를 위하여 최적 환기시스템을 적용한 처분장 설계를 목적으로 여러 환기시스템 설계안을 비교 분석하였다. 분석결과, 8가지 중 case 4(병렬회로)와 case 6(혼합 Diagonal 회로)의 환기효율이 우수한 결과를 나타냈으며, 이와 같은 연구를 통해 환경 친화적인 처분장의 건설이 가능할 것이다.

  • PDF

A Study on the Airflow Distribution in the Diagonal Ventilation Circuit for the Design of a High Level Radioactive Waste Repository (고준위 방사성 폐기물 처분장 설계를 위한 Diagonal 환기 회로 내 공기량 분배에 관한 연구)

  • Hwang, In-Phil;Choi, Heui-Joo;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • In this study, diagonal ventilation circuits that are advantageous in air flow direction control were studied. Based on the results of the study, it could be seen that air volumes in diagonal ventilation circuits could also be calculated using numerical formulas or programs if the air volumes and air flow directions to be infused into diagonal branches are determined in advance as with other serial/parallel circuits. To apply the results, design plans for high level radioactive waste repositories applied with diagonal ventilation circuits and parallel ventilation circuits. To compared the each design plans and obtain expected operation results, ventilation network simulations were conducted through the Ventsim program which is a ventilation networking program. Based on the results, in the case of diagonal repositories that was expected to cause great increases in resistance, fan pressure was 1570 pa, total flux was 84 $m^3/s$, fan efficiency was 76.4%, fan power consumption was 181.2 kW and annual fan operating costs were 178,710,838 and thus maximum around 8% differences were shown in pressure and flux values and a difference of around 1.5% was shown in terms of operating costs.