• Title/Summary/Keyword: 고정하중 응력

Search Result 131, Processing Time 0.023 seconds

Influence of crestal module design on marginal bone stress around dental implant (임플란트 경부 디자인이 변연골 응력에 미치는 영향)

  • Lim, Jung-Yoel;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.

Structural Analysis of the Dual Thickness Laser Welded Frame (이종두께 레이저 용접 프레임의 구조해석)

  • 이영신;윤충섭;오재문
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • In this paper, the stress, buckling and vibration analyses have been performed for several case with the spot weld stiffened rear side frame, the unstiffened rear side frame and the dual thickness laser weld rear side frame. For stress and vibration analyses, the clamped boundary condition with spring supports are used. But for the buckling analyses, the both ends simply supported boundary conditions are used. For the nummerical analyses, ANSYS 5.0 code is adopted. Maximum stress of the spot weld stiffened rear side frame occurs in the main frame and is 80.9 MPa. Maximum strain is 501 .mu.. The maximum stress of the dual thickness laser weld rear side frame of 1.8mm thickness structure is equal with the stress of spot weld stiffened frame. The weight of dual thickness laser weld frame can be reduced about 17.2%. For the stiffened spot weld rear side frame with both ends simply supported boundary conditon, the bucking load is 52.54 kN. When the thickness of the dual thickness laser weld rear side frame become 1.9mm thickness structure, the buckling load of the stiffenerd rear side frame is equal to that of dual thickness laser weld frame. The reduction of the structure weight is about 5%. The fundamental natural frequency of the stiffened spot weld rear side frame for bending mode is 163.6 Hz and that of the dual thickness laser weld rear side frame is 179.8 Hz.

  • PDF

Study on Convergence Technique through Strength Analysis of Stabilizer Link by Type (스테빌라이저 링크의 종류별 강도 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the lower arm is connected and fixed at the model of the automotive stabilizer link as the moment is applied. There are models of 1, 2 and 3 as a length control type, a general type and a single body type respectively. These models are investigated by performing the convergence technique through the design and the strength analysis with CATIA and ANSYS. As the maximum equivalent stress of model 3 has the least, model 3 can endure the highest load among three models. As the fatigue analysis, model 3 has the minimum blocks as the frequency of stress state, model 3 becomes also safest among three models. As models of 1, 2 are in the order of the next safety, the number of blocks becomes larger as the frequency of stress state and the instability becomes higher. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

An Experimental Study on Thermal Prestressing Method for Strengthening Concrete Bridge (콘크리트 교량의 보강을 위한 온도 프리스트레싱 공법의 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2007
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for concrete bridges. However, the external post-tensioning method has some disadvantages such as stress concentration at anchorages and inefficient load carrying capability regarding live loads. Thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect is substantiated and the FEM approach for its analysis is verified.

Design Improvements for Crossbeams and Stringers of Steel Box Girder Bridge (강박스거더교 가로보와 세로보 합리화 연구)

  • Gil, Heungbae;Kang, Sang Gyu;Cho, Jun Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • This research carried out to optimize crossbeams and stringers of steel box girder bridges, which are parts of floor system and support loading from the bridge deck. In the current design practice, the crossbeam is densely deployed with a spacing of 6 meters, and the stringer is placed between the crossbeams. The crossbeams and stringer are connected to the deck through slab anchors but the allowable stress of the compression flange is determined by the lateral-torsional buckling. To increase economic efficiency of the steel box girder bridges. the increased spacing of the crossbeam was studied. The study shows that the spacing can be increased up to 10 meters. However, higher strength steel plates are necessary. Shear studs rather than slab anchors are also recommended to prevent lateral-torsional buckling strength of the crossbeams and stringer.

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.

Kinematic and Structural Analysis of a 6-DOF Manipulator for Narrow-space Work (협소 공간 작업을 위한 6축 다관절 로봇의 기구학 및 구조해석)

  • Chung, Seong Youb;Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.666-672
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator for narrow workspaces in press forming processes, such as placing PEM nuts on the bottom of a chassis. In this paper, kinematic analysis was performed for the position control of the manipulator, along with structural analyses for position accuracy with different payloads. First, the Denavit-Hatenberg (DH) parameters are defined, and then the forward and backward kinematic equations are presented using the DH parameters. The kinematic model was verified by visual simulation using Coppelia Robotics' virtual robot experimentation platform (V-REP). Position accuracy analysis was performed through structural analyses of deflection due to self-weight and deflection under full payload (5 kgf) in fully opened and fully folded states. The maximum generated stress was 22.05 MPa in the link connecting axes 2 and 3, which was confirmed to be structurally safe when considering the materials of the parts.

Biomechanical Evaluation of Total Disc Replacement in Spine (척추 인공디스크 수술의 생체역학적 평가)

  • Choi, Dae Kyung;Park, Won Man;Kim, Yoon Hyuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.267-268
    • /
    • 2011
  • 본 연구에서는 유한요소 해석 방법을 이용하여 경추 유한요소 모델을 개발하고, 척추 인공디스크 수술 후 경추 분절의 생체역학적 특성을 평가하였다. 반구속 및 비구속 개념의 인공디스크가 삽입된 경추 유한요소 모델의 제 7 경추체를 완전히 고정시키고 추적 경로 방향의 50 N의 압축력을 가한 상태에서 1 Nm의 굴곡과 신전, 측면 굴곡, 비틀림 모멘트를 가하였다. 모든 방향의 하중 조건에서 인공디스크가 삽입된 경추 모델들의 회전량이 정상 경추 모델의 회전량에 비하여 크게 나타났다. 또한 인공디스크를 삽입한 운동 분절에서 정상에 비하여 후관절의 접촉력과 여섯 가지 주요 인대에 걸리는 응력이 높게 나타났다. 본 연구의 결과는 척추 인공디스크 수술 시 수술 방법의 선택뿐만 아니라 새로운 경추 수술용 임플란트 개발을 위한 인체정보 콘텐츠를 구축하는데 유용하게 활용될 수 있을 것으로 기대된다.

  • PDF

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.