• Title/Summary/Keyword: 고정익 항공기

Search Result 84, Processing Time 0.028 seconds

How to Manage Aging Aircraft (노후 항공기 관리방안)

  • Choe, Se-Jong;Kim, Cheon-Yong
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.202-208
    • /
    • 2016
  • 최근 5년간 발생한 국적 항공기 사고 23건 중 헬기사고가 16건으로 전체 항공사고의 70%를 차지한다. 현재 국내에서 고정익 항공기 549대, 회전익 항공기 186대가 각각 운영(군 경찰 보유헬기 제외)되고 있음을 감안하면 회전익 항공기 사고가 훨씬 높은 편이며, 고정익 항공기 가동시간에 비하여 가동률이 매우 낮은 회전익 항공기를 고려하면 비행시간당 항공기 사고 비율은 회전익 항공기가 월등하게 높은 편이다. 또한 고정익 항공기의 평균기령은 10.9년인데 비하여 산림항공본부를 비롯한 헬기운영업체에서 운영 중인 회전익 항공기의 평균기령은 18.9년으로 회전익 항공기가 전체적으로 노후화 되어 있으나, 국적항공사에 운영 중인 노후 항공기 관리프로그램을 회전익 항공기 운영사에서는 운영하지 않고 있다. 따라서 본 연구를 통하여 노후 항공기 운영현황을 검토하여 노후 회전익 항공기 운영기준을 수립하고 노후 회전익 항공기의 정비프로그램을 정립하여 회전익 항공기의 지속감항성을 확보할 수 있는 방안과 수명주기 설정을 마련하고자 한다.

  • PDF

Availability Evaluation for Generation of Geospatial Information using Fixed Wing UAV (고정익 무인항공기를 이용한 공간정보 구축의 활용성 평가)

  • Park, Young Jin;Jung, Kap Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.159-164
    • /
    • 2014
  • These days, inexpensive and high efficiency UAV of disaster prevention and spatial information has been given more attention. But studies about test of accuracy of UAV were not enough despite high interest. This research produced DSM and ortho photo and estimated accuracy by comparing coordinates with GNSS survey to evaluate outcome of fixed wing UAV. The ortho photo was found to make use of it to update 1/1,000 map. This research investigated spatial information construction using existing terrestrial LiDAR to suggest effectiveness of fixed wing UAV.

A Study on Development of Certification Basis for VTOL UAS Based on Analysis of Certification Criteria for Fixed/Rotary Wing UAS and SC-VTOL (고정익/회전익 인증기준 및 수직이착륙 특수기술기준 분석 기반의 수직이착륙 무인항공기 인증기준 개발 방안)

  • Yoo, Minyoung;Kim, Suho;Oh, Yeonkyeong;Jin, Kyunghoon;Lee, Hwan;Kim, Woogyeom;Gong, Byeongho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.16-23
    • /
    • 2021
  • Domestic and foreign manufacturers are developing VTOL UASs in various shapes in line with demand for future technologies. UASs have been developed in a shape classified as fixed/rotary wing, and verified by appropriate certification standards. However, airworthiness certification of recent VTOL UASs is strict with the absence of VTOL-specific certification standards. In this paper, criteria applicable to VTOL UAS were presented through analysis of STANAG-4671 and STANAG-4702, which are certification standards for fixed/rotary wing UAS of the North Atlantic Treaty Organization (NATO) and the Special Condition for VTOL Aircraft (SC-VTOL) of European Aviation Safety Agency (EASA). For this, the categorization criteria of general/fixed-wing/VTOL characteristics were established for each standard item and utilized for analysis.

Electric power Small fixed wing UAV Aerodynamic performance Analysis (전기 동력 소형 고정익 무인항공기 공력성능 연구)

  • Jeong, Seongrok
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, the performance of a small fixed wing unmanned aerial vehicle is predicted theoretically with the minimum specifications and a low Reynolds number. Based on the results, it was compared with the results of an actual flight test and simple electric motor wind tunnel test. As a result of the validity of the analysis, a 3.5 kilograms class fixed wing small UAV can predict aerodynamic performance by general theory analysis. However, the required thrust was analyzed as a possible design error. Based on the results of this study, this paper proposed a method to minimize the design error when developing small fixed wing UAV flying in a low Reynolds number.

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

Accuracy Evaluation of Open-air Compost Volume Calculation Using Unmanned Aerial Vehicle (무인항공기를 이용한 야적퇴비 적재량 산정 정확도 평가)

  • Kim, Heung-Min;Bak, Su-Ho;Yoon, Hong-Joo;Jang, Seon-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.541-550
    • /
    • 2021
  • While open-air compost has value as a source of nutrients for crops in agricultural land, it acts as a pollution that adversely affects the environment during rainfall, and management is required. In this study, it was intended to analyze the accuracy of calculating open-air compost volume using fixed-wing UAV (unmanned aerial vehicle) capable of acquiring a wide range of images and automatic path flights and to identify the possibility of utilization. In order to evaluate the accuracy of calculating the three open-air compost volume, ground LiDAR surveys and precision surveys using a rotary UAV were performed. and compared with the open-air compost volume acquired through a fixed-wing UAV. As a result of comparing the calculation of open-air compost volume based on the ground LiDAR, the error rate of the rotary-wing was estimated to be ±5%, and the error rate of fixed-wing was -15 ~ -4%. one of three open-air compost volume calculated by fixed-wing was underestimated as about -15 %, but the deviation of the open-air compost volume was 2.9 m3, which was not significant. In addition, as a result of periodic monitoring of open-air compost using fixed-wing UAV, changes in the volume of open-air compost with time could be confirmed. These results suggested that efficient open-air compost monitoring and non-point pollutants in agricultural for a wide range using fixed-wing UAV is possible.

Model-Reference Adaptive Pitch Attitude Control of Fixed-Wing UAV (고정익 무인 항공기 피치 자세의 모델-참조 적응 제어)

  • Kim, Byung-Wook;Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.499-507
    • /
    • 2019
  • Despite the well-known mathematical model of fixed-wing aircraft, there are various studies to meet desired performances by considering the modeling errors in the extended flight envelope. This paper proposes a new adaptation mechanism of model-reference adaptive control, which applies the Levenberg-Marquardt algorithm to the pitch attitude control of fixed-wing UAV. In addition, reference model in the adaptation law is set by referring to the dynamic properties of the plant model. The performance of the proposed adaptive control law is verified through simulations and flight tests.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.

Roadmap Configuration for Technical Elements Acquisition of Military Fixed Wing Aircraft Parts PHM and Verification of Parts Selection Phase (군수용 고정익 항공기 구성품 PHM 적용을 위한 기술 요소 획득 로드맵 구성 및 구성품 선정단계 검증)

  • Kim, Geun-Yeong;Hwang, Jae-Ki;Im, Yeong-Ki;Ha, Seok-Wun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.665-677
    • /
    • 2019
  • The United States has implemented the TLCSM (Total Life Cycle System Management) to minimize the total lifecycle cost of aircraft and to improve operating availability. As a practical strategy, CBM + is required to be applied to new weapons systems. The F-35 aircraft applied PHM under CBM + concept from the development stage. In this study, we analyzed the technology trends, the level of PHM technology in Korea, and the development trends of foreign technology. Then, we analyzed the PHM technical elements and constructed the 5 phases of technical elements acquisition roadmap for military fixed wing aircraft parts PHM.