• Title/Summary/Keyword: 고정오차

Search Result 823, Processing Time 0.028 seconds

Evaluation of Tendency for Characteristics of MRI Brain T2 Weighted Images according to Changing NEX: MRiLab Simulation Study (자기공명영상장치의 뇌 T2 강조 영상에서 여기횟수 변화에 따른 영상 특성의 경향성 평가: MRiLab Simulation 연구)

  • Kim, Nam Young;Kim, Ju Hui;Lim, Jun;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • Recently, magnetic resonance imaging (MRI), which can acquire images with good contrast without exposure to radiation, has been widely used for diagnosis. However, noise that reduces the accuracy of diagnosis is essentially generated when acquiring the MR images, and by adjusting the parameters, the noise problem can be solved to obtain an image with excellent characteristics. Among the parameters, the number of excitation (NEX) can acquire images with excellent characteristics without additional degradation of image characteristics. In contrast, appropriate NEX setting is required since the scan time increases and motion artifacts may occur. Therefore, in this study, after fixing all MRI parameters through the MRiLab simulation program, we tried to evaluate the tendency of image characteristics according to changing NEX through quantitative evaluation of brain T2 weighted images acquired by adjusting only NEX. To evaluate the noise level and similarity of the acquired image, signal to noise ratio (SNR), contrast to noise ratio (CNR), root mean square error (RMSE) and peak signal to noise ratio (PSNR) were calculated. As a result, both noise level and similarity evaluation factors showed improved values as NEX increased, while the increasing width gradually decreased. In conclusion, we demonstrated that an appropriate NEX setting is important because an excessively large NEX does not affect image characteristics improvement and cause motion artifacts due to a long scan.

Avaliable analysis of precise positioning using the LX-PPS GNSS permanent stations (LX-PPS GNSS 상시관측소의 정밀측위 활용 가능성 분석)

  • Ha, Jihyun;Park, Kwan-Dong;Kim, Hye-In
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.23-38
    • /
    • 2021
  • In this paper, we analyzed the possibility of utilizing LX-PPS GNSS permanent stations whose antennas are installed on the building rooftop for the purpose of high-precision GNSS positioning services. We picked 15 pairs of adjacent GNSS permanent stations operated by LX-PPS and NGII, and then produced 3-year-long time series using the high-precision data processing software called GIPSY. Patterns and trends of position estimates were compared and analyzed. Horizontal and vertical deviations including the linear velocities coincide with the well-known crustal deformation rates of the Korean peninsula. We also observed almost the same annual or seasonal patterns from those nearby sites. After detrending the linear velocity, the amplitude and phase of annual signals almost perfectly match each other within the baseline length of 2 km. By subtracting seasonal signals, the RMS and standard deviations in LX-PPS PPGR with respect to NGII KANR are about 1, 2, and 5 mm in the north-south, east-west, and vertical directions, respectively. From this analysis it can be concluded that the rooftop-installed LX-PPS sites show similar level of stability and positioning performance comparable to those ground-mounted NGII stations.

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction (데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 )

  • Byoungwook Kim;Ji Su Park;Hong-Jun Jang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2023
  • The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

Structural Static Test of Pylon for External Attachment Separation Load (외부장착물 분리하중에 대한 파일런 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Hong, Seung-ho;Choi, Hyun-kyung;Cho, Sang-hwan;Park, Hyung-bae
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2022
  • The bomb rack unit (BRU) installed inside the pylon serves to fix external attachments such as external fuel tank or external weapon, and also serves to separate external attachments in case of emergency. In particular, the load generated when the external attachment is separated from the BRU is called the punching load. In this study, we present the results of a structural static test performed to verify the structural integrity of the pylon under the BRU punching condition acting on it. In the structural static test report, we present the implementation method for the separation load of the external attachment and the test profile for the BRU punching load condition, and compared the error between the load input signal and the feed-back signal to determine the appropriateness of load control in each test. Furthermore, we compared the strain results obtained in the numerical analysis and structural test at the main positions of the specimen. As a result, it was shown that the load of the actuators were properly controlled within the allowable error range in each test, and the numerical analysis effectively predicted the test result. Finally, through structural static tests conducted by design limit load and design ultimate load, we verified that the aircraft pylon dealt with in this study has sufficient structural strength for external attachment separation condition.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment (자체 제작한 Foxtail Millet Vacuum Cushion의 광자선 피부암 치료 시 유용성 검증)

  • Choi, Shin-Cheol;Lee, Kyung-Jae;Jung, Sung-Min;Oh, Tae-Seong;Park, Jong-Il;Shin, Hyun-Kyo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • Purpose: The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we producted Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. Materials and Methods: We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Results: Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1~0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges ($100{\pm}3%$), and achieved the enough skin dose (Gross Tumor Volume dose : $100{\pm}5%$) in radiation therapy planing. Conclusion: We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  • PDF

Evaluation of the Accuracy and usability of Trigger mode in Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 Trigger mode 투시영상 획득 시 호흡 속도에 따른 정확성 평가 - Phantom Study)

  • Park, je wan;Kim, min su;Um, ki cheon;Choi, seong hoon;Song, heung kwon;Yoon, in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.25-33
    • /
    • 2021
  • Purpose : The purpose of this study is to evaluate the accuracy and usefulness of the Trigger mode for the Respiratory Gated Radiation Therapy (RGRT) Materials and methods : A QUASAR respiratory phantom that inserted a 3 mm fiducial marker (a gold marker) was used to estimate the accuracy of the Trigger mode. And the 20 bpm was used as reference respiration rate in this study. The marker that placed at the center of the phantom was contoured, and the lower threshold of a gating window was fixed at 2.0 mm using an OBI with Truebeam STxTM. The upper threshold was measured every 0.5 mm from 1.0 mm to 3.0 mm. The respiration rates were changed every 10 bpm from 10 bpm to 60 bpm. We repeatedly measured five times to check the error rate of the trigger mode in the same condition. Result : The differences of a distance from a peak phase to upper threshold, 1.0 to 3.0 mm at a 20 bpm as a reference for 3 days in a row were 0.68±0.05 mm, 0.91±0.03 mm, 1.23±0.03 mm, 1.42±0.04 mm, and 1.66±0.06 mm, respectively. Measurement result of changes in respiratory rate compared to baseline respiratory rate in maximum absolute difference. The coefficient of determination (R2) to estimate the correlation between the respiration velocity and variation of absolute difference was on average 0.838, 0.887, 0.770, 0.850, and 0.906. The p-values of all the variables were below 0.05. Conclusion : Using Trigger mode during respiratory gated radiation therapy (RGRT), accuracy and usefulness of trigger mode at reference breathing rate were confirmed. However, inaccuracies depending on the rate of breathing it could be uncertain in case of respiration rate is faster than 20 bpm as a standard respiration rate compared to slower than 20 bpm. Consequently, when conducting a RGRT using the trigger mode, real time monitoring is required with well educated respiration.