• 제목/요약/키워드: 고전압 발생회로

검색결과 54건 처리시간 0.021초

가드링 구조에서 전류 과밀 현상 억제를 위한 온-칩 정전기 보호 방법 (An On-chip ESD Protection Method for Preventing Current Crowding on a Guard-ring Structure)

  • 송종규;장창수;정원영;송인채;위재경
    • 대한전자공학회논문지SD
    • /
    • 제46권12호
    • /
    • pp.105-112
    • /
    • 2009
  • 본 논문에서는 $0.35{\mu}m$ Bipolar-CMOS-DMOS(BCD)공정으로 설계한 스마트 파워 IC 내의 가드링 코너 영역에서 발생하는 비정상적인 정전기 불량을 관측하고 이를 분석하였다. 칩내에서 래치업(Latch-up)방지를 위한 고전압 소자의 가드링에 연결되어 있는 Vcc단과 Vss 사이에 존재하는 기생 다이오드에서 발생한 과도한 전류 과밀 현상으로 정전기 내성 평가에서 Machine Model(MM)에서는 200V를 만족하지 못하는 불량이 발생하였다. Optical Beam Induced Resistance Charge(OBIRCH)와 Scanning Electronic Microscope(SEM)을 사용하여 불량이 발생한 지점을 확인하였고, 3D T-CAD 시뮬레이션으로 원인을 검증하였다. 시뮬레이션 결과를 통해 Local Oxidation(LOCOS)형태의 Isolation구조에서 과도한 정전기 전류가 흘렀을 때 코너영역의 형태에 따라 문제가 발생하는 것을 검증하였다. 이를 통해 정전기 내성이 개선된 가드링 코너 디자인 방법을 제안하였고 제품에 적용한 결과, MM 정전기 내성 평가에서 200V이상의 결과를 얻었다. 통계적으로 Test chip을 분석한 결과 기존의 결과 대비 20%이상 정전기 내성이 향상된 것을 확인 할 수 있었다. 이 결과를 바탕으로 BCD공정을 사용하는 칩 설계 시, 가드링 구조의 정전기 취약 지점을 Design Rule Check(DRC) 툴을 사용하여 자동으로 찾을 수 있는 설계 방법도 제안하였다. 본 연구에서 제안된 자동 검증방법을 사용하여, 동종 제품에 적용한 결과 24개의 에러를 검출하였으며, 수정 완료 제품은 동일한 정전기 불량은 발생하지 않았고 일반적인 정전기 내성 요구수준인 HBM 2000V / MM 200V를 만족하는 결과를 얻었다.

플라즈마 블라스팅을 이용한 유류오염토양의 투수성과 정화효율 개선을 위한 실험적 연구 (An Experimental Study to Improve Permeability and Cleaning Efficiency of Oil Contaminated Soil by Plasma Blasting)

  • 장현식;김기준;송재용;안상곤;장보안
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.557-575
    • /
    • 2020
  • 유류오염 토양의 투수성 및 정화효율을 개선하기 위하여 고전압 아크 방전에 의한 플라즈마 블라스팅을 토양에 적용하였다. 이 연구를 위하여 고전압 발생장치를 새로 제작하였고, 실트질 모래인 토양시료, 토양시료에 소석회를 혼합한 시료와 토양시료에 시멘트를 혼합한 세 종류의 토양시료를 다져서 소형 토조와 대형 토조를 제작한 후 각각의 토조내에서 플라즈마 블라스팅을 시행하여 유체확산의 범위와 투수성의 변화를 측정하였다. 플라즈마 블라스팅이 시행된 토양시료에서는 플라즈마 블라스팅이 시행되지 않은 대조군에 비해 유체의 확산 부피가 약 11~71% 증가하였다. 낮은 전압하에서 플라즈마 블라스팅이 시행되면 토양 내에서는 구조적 취약면(다짐면)을 따라 수평적 확산이 우세하게 나타났으나 높은 전압에 의한 플라즈마 블라스팅은 토양 내에 구형의 입체적인 확산을 발생시켰다. 플라즈마 블라스팅은 투수성 또한 증가시켰으며, 소석회 및 시멘트가 혼합된 토양에서 더욱 뚜렷하게 관찰되어, 플라즈마 블라스팅이 시행된 시료들은 대조군 시료에 비해 투수계수가 450~1,052% 범위로 증가하였다. 플라즈마 블라스팅이 1회만 실시된 토양시료의 투수계수는 방전 전압이 높아질수록 증가하였으나 동일한 전압으로 여러 번의 블라스팅이 시행된 토양시료의 투수계수는 증가하거나 감소하였다. 토양시료에 경유를 이용하여 인위적으로 오염시킨 토양시료에 플라즈마 블라스팅을 실시하여 정화효율을 측정하였다. 플라즈마 블라스팅이 시행되면, 방전지점 근처의 토양에서는 평균 393%, 방전지점으로부터 20 cm 이상 이격된 하부 토양에서는 평균 239% 정도의 정화효율이 개선되었으나 방전 전압과 정화효율은 상관성을 보이지 않았다. 위의 결과는 플라즈마 블라스팅이 토양의 투수성과 정화효율을 상당히 개선하므로, 유류오염 토양의 원위치 정화에 효율적으로 이용될 가능성을 보여주었다.

냉음극 형광램프의 표준화 계측을 위한 실험과 분석 (An Experiment and Analysis for Standardize Measurement on CCFL)

  • 김동준;정종문;정희석;김진선;이민규;김정현;구제환;권기청;강준길;최은하;조광섭
    • 한국진공학회지
    • /
    • 제17권4호
    • /
    • pp.331-340
    • /
    • 2008
  • 교류 $50{\sim}100\;kHz$의 고주파와 수 kV의 고전압으로 구동되는 냉음극 형광램프의 전류 및 전압을 계측하는 방법을 조사하였다. 고 전압 측에 설치되는 프로브 자체의 임피던스 영향으로 램프의 휘도가 변화하고 누설 전류가 발생하여 정확한 전류 및 전압의 계측이 어렵다. 따라서 프로브의 임피던스와 누설 전류를 고려한 회로 분석을 통하여 올바른 계측 방법을 제시하였다. 프로브 설치로 휘도 변화 시, 인버터에 입력되는 DC 전압을 조정하여 램프의 특정 휘도를 유지하여 계측한다. 램프 전류($I_G$)는 접지 측에서 전류 프로브나 고주파 전류계로 계측하며, 전압은 고 전압 측에 설치한 전압 프로브로 계측한다. 램프 전압($V_C$)은 고전압이 인가되는 냉음극과 안전 캐패시터 사이에서 계측하며, 인버터의 출력 전압(VI)은 안전 캐패시터와 인버터 출력단 사이에서 계측한다. 램프 전압($V_C$)과 램프 전류($I_G$)의 위상차가 없기 때문에, 램프 자체의 순수 소모 전력은 램프 전압($V_C$)와 램프 전류($I_G$)의 곱이다. 인버터의 출력 전압($V_I$)과 램프 전류($I_G$)의 위상차($\theta$)는 전압 프로브의 용량성 임피던스로 인하여 계측값이 부정확하며, 회로의 분석에서 얻어진 $cos{\theta}=V_C/V_I$로부터 위상차를 얻을 수 있다.

플라즈마 발파를 이용한 토양 내 유체의 침투 효율 개선 (Improvement of Fluid Penetration Efficiency in Soil Using Plasma Blasting)

  • 백인준;장현식;송재용;이근춘;장보안
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.433-445
    • /
    • 2021
  • 고전압 아크 방전에 의한 플라즈마 발파의 유체 침투 효율을 검증하기 위해 실험실 규모의 토사 시료에 대하여 발파 시험을 실시하였다. 이 연구를 위해 대용량 축전기가 포함된 플라즈마 발파 장치와 직경 80 cm, 높이 60 cm 크기의 컬럼형 토사 시료를 제작하였다. 토사 시료로는 사질토와 실트를 7:3 비율로 섞은 A 시료 7개와 9:1 비율로 섞은 B 시료 3개가 제작되었다. A 시료에 플라즈마 발파 없이 수압만으로 유체를 주입했을 때는 시추공 주변으로 국소적인 침투만 발생되었고 침투면적비는 5% 이하로 분석되었다. 플라즈마 발파에 의한 유체 침투 시험은 1 kJ, 4 kJ 그리고 9 kJ의 방전 에너지로 실시되었다. A 시료에 대한 플라즈마 발파 시험에서 유체의 침투면적비는 1회만 발파하였을 때는 16~25%이고 5회 연속 발파 시에는 30~48%로 분석되어, 수압만으로 유체를 주입했을 때보다 침투면적이 최대 9.6배까지 넓어졌다. B 시료에 대한 5회 연속 플라즈마 발파 시험에서 유체의 침투면적비는 33~59%로 분석되어 동일 조건의 A 시료 시험에 비해 침투면적이 1.1~1.4배 정도 넓어졌다. 이러한 결과는 플라즈마 발파 시에 방전 에너지가 클수록, 발파 횟수가 증가할 수록 유체의 침투면적이 증가하며, 투수성이 큰 토양에서 플라즈마 발파가 더욱 효과적임을 보여준다. 유체 침투 효과를 삼차원적인 부피로 분석하기 위해 유체 침투반경을 계산하였다. 수압으로만 유체를 주입했을 때의 침투반경은 9 cm인 반면에, 9 kJ의 에너지로 5회 발파 시에는 침투반경이 27~30 cm로 계산되어 유체 침투 효과가 최대 333%까지 증가되었다. 이러한 연구결과는 투수성이 낮은 실제 오염토양에서 원위치 토양 세정을 실시할 때 플라즈마 발파 기술을 적용하면, 세정제의 전달범위가 증가되어 정화효율이 개선될 수 있다는 것을 보여준다.