마르코프체인 시뮬레이션으로 추출한 점을 기반으로 커널 밀도함수를 구성하고 중요도 추출함수로 가정하였다. 크리깅 근사모델은 한계상태식 근방에서 상세히 구성되었다. 고장확률은 크리깅 근사모델에 대해 중요도 추출법을 수행하여 계산하였다. 커널 밀도함수가 한계상태식의 근방에서 더 많은 점을 추출할 수 있도록 기존의 방법을 개선하였다. 커널 밀도함수의 파라메터를 찾기 위한 안정적인 수치계산 방안이 제시된다. 크리깅 근사모델의 불확실성으로 인해 계산된 고장확률이 변경될 가능성을 계산하여, 크리깅 근사모델의 완성도를 평가하였다.
유한고장수를 가진 비동질적인 포아송 과정에 기초한 모형들에서 잔존 결함 1개당 고장 발생률 (강도함수)은 일반적으로 상수, 혹은 단조증가 및 단조 감소 추세를 가지고 있다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 Goel-Okumoto 모형 강도함수를 재조명하고 이 분야에 적용 될수 있는 보다 넓은 왜도와 첨도를 가지는 Burr모형 강도 함수 및 의료정보분야 및 여러 분야에서 널리 사용되는 2모수 카파(Kappa(2)) 분포 모형 강도함수를 제안하여 비교하고자 한다. 수치적인 예에서는 고장 간격시간으로 구성된 NTDS(Naval Tactical Data System)자료를 이용하였고 모수추정 방법은 최우추정법과 일반적인 수치해석 방법인 이분법을 사용하여 모수 추정을 실시하였다. 그리고 모형 설정과 선택 판단기준은 편차 자승합을 이용한 적합도 검정이 사용되었다.
본 논문에서는 하수처리장 주요 장비 고장밀도함수를 기반으로 시스템 가용성 평가가 수행되었다. 프로세스 구성과 구성요소의 고장률에 따른 시스템 가용성 및 위험요소 분석에 초점을 맞추고 있다. 하수처리장 시스템 가용성 분석을 위하여 기자재 분류와 해당기자재의 고장확률밀도함수를 정립하였다. 가용성 평가 과정의 불확실성의 해소를 위하여 몬테카를로 시뮬레이션 기법과 이벤트기법을 도입하였다. 하수처리장 시스템 가용성은 구성장비가 직렬연결 상태인 경우에 50.4%로 평가되었으며, 장비별 보조시스템이 추가 적용된 경우 80.1% 이상으로 증가하였다. 슬러지 탈수 및 농축 공정의 시스템 오작동은 전체 시스템 오작동의 77% 이상에 해당하고 있어 주 위험 요인으로 평가되었다.
다항지수 신뢰도 함수(multinomial-exponential reliability function ; MERF) 는 소프트웨어의 고장/수정 공정을 세밀하게 수행하는 중에 개발되는 관계에 있다. 후에 MERF는 좀더 매우 단순화한 지수 신뢰도 함수(exponential reliability function ; EARF)로 근사화되는 공정을 거치게 된다. 이는 MERF의 특성을 대부분 가지고 있어서 두 개의 함수가 하나의 신뢰도 함수로 단일화되도록 한다. 신뢰도 모델 MERF/EARF는 소프트웨어 고장 공정을 NHPP로, 수정공정을 다항분포로 고려한다. 이 모텔은 두 개의 공정 모두가 통계적 독립인 것으로 간주한다. 본 논문에서는 모델의 이론적인 기준, 수학적 특성, 소프트웨어 신뢰도에의 응용을 검토한다. 이는 물리적 인 시스템을 검사하고 유지보수하는 선도적인 모델응용이다. 본 논문에는 소프트웨어 신뢰도 분석에 응용하는 하나의 수치 예를 포함한다.
소프트웨어 개발 과정에서 소프트웨어 신뢰성은 매우 중요한 이슈이다. 소프트웨어 고장분석을 위한 무한고장 비동질적인 포아송과정에서 결함당 고장발생률이 상수이거나, 단조 증가 또는 단조 감소하는 패턴을 가질 수 있다. 본 논문에서는 소프트웨어 신뢰성에 대한 적용 효율을 나타내는 로그 및 지수파우어 강도함수(로그 선형, 로그 파우어와 지수 파우어)로 신뢰성 모형을 제안한다. 효율적인 모형을 위해 평균제곱에러(MSE), 결정계수($R^2$)에 근거한 모델선택, 최우추정법, 이분법에 사용된 파라미터를 평가하기 위한 알고리즘이 적용되였다. 제안하는 로그 및 지수파우어 강도함수를 위해 실제 데이터을 사용한 고장분석이 적용되였다. 고장데이터 분석은 로그 및 지수파우어 강도함수와 비교하였다. 데이터 신뢰성을 보장하기 위하여 라플라스 추세검정(Laplace trend test)을 사용하였다. 본 연구에 제안된 로그선형과 로그파우어 및 지수파우어 신뢰성모형도 신뢰성 측면에서 효율적이기 때문에 (결정계수가 70% 이상) 이 분야에서 기존 모형의 하나의 대안으로 사용할 수 있음을 확인 할 수 있었다. 이 연구를 통하여 소프트웨어 개발자들은 다양한 강도함수를 고려함으로서 소프트웨어 고장형태에 대한 사전지식을 파악하는데 도움을 줄 수 있으리라 사료 된다.
본 논문에서는 미지의 유계를 가진 불확실성을 포함한 비선형 시스템에 대한 고장 진단 설계를 제안한다. 제안된 고장 진단 필터는 비선형 관측기 설계 기술에 기초하여 설계되며, 신경망을 이용하여 고장 성분과 불확실성 성분을 추정하고 추정된 불확실성의 상한값을 고장 진단에 이용한다. 제안된 근사기는 불확실성과 고장 함수를 추정함으로써 고장 검출뿐만 아니라 고장 진단을 확인할 수 있도록 설계된다. 모의실험을 통해서 제안된 고장 진단 설계의 성능을 검증하였다.
CORBA, DCOM, Java RMI 등과 같은 분산 객체 기술이 분산 응용의 신뢰성을 직접적으로 향상시키지는 못한다. 이러한 분산 객체 기술에 고장 감내성을 추가하여 신뢰성 있는 시스템을 구축하기 위해서 객체 단위의 복제 그룹 관리와 고장 탐지 및 회복 메커니즘이 필요하다. 본 논문에서는 신뢰성 있는 고장 감내성 Java RMI 객체를 개발하기 위하여 고장 탐지와 그룹 관리를 위한 그룹 관리자와 원격 인터페이스를 설계하고, 고장 감내성 클래스를 정의한다. 또한 고장 감내성 객체의 투명한 그룹 참여를 위하여 Naming 클래스와 RMIRegistry를 확장한다. 응용 개발자는 고장 감내성 클래스를 상속함으로써 외부의 도움 없이 간단히 고장 감내성 응용 객체를 개발하여 신뢰성을 높일 수 있다. 100M Ethernet으로 연결된 Linux kernel2.2.1의 PentiumIII머신 3대와 Solaris2,6의 Sun Spar치머신을 클라이언트한 시스템을 사용하고 JDK 1.2.2를 이용하여 설계한 객체를 구현하여 다양한 객체고장 에 대해 복구되는 것을 확인하였다. 성능 평가는 그룹크기에 따른 함수의 응답속도와 메시지 크기에 따른 응답속도를 비교하였다.
본 논문에서는, 신뢰성분석에서 고려되는 평균고장률의 추이에 관한 검정법에 대해 연구하였다. 즉, 수명분포가 지수분포를 따르는지 또는 수명분포의 평균고장률이 증가하는지를 검정하는 검정통계량을 제안하였다. 제안된 검정통계량은 순서통계량의 선형 함수의 형태로 이루어져 있고 대표본 뿐만 아니라 소표본에서도 쉽게 적용될 수 있다. 또한 제안된 검정통계량의 점근상대효율을 평가하기 위해, Klefsjo(1983)가 제안한 검정통계량과 비교하여 보았다.
본 논문에서는 배전선로에서 발생하는 여러 고장유형을 판별하기 위해서 적응형 퍼지추론 시스템을 적용하는 새로운 기법을 제시하였다. 배전선로의 고장과 고장유사현상 데이터를 추출하기 위해서 EMTP를 이용하여 RL부하, 아크로부하, 컨버터부하가 있는 배전계통을 구성하고 여러 형태의 고장과 고장유사현상에 대해 시뮬레이션을 하였다. 이를 통해 얻은 전류 파형으로부터 기본파성분, 영상분전류, 짝수 고조파성분의 합, 홍수 고조파성분의 합, 그리고 비정규 고조파성분의 합의 5개의 입력변수를 추출하고 학습을 통해서 각 입력변수의 소속함수의 소속도를 자동으로 결정하였다. 이 적응형 퍼지추론 시스템을 이용한 기법을 평가하기 위해서 학습시와 다른 고장상황을 모의하여 얻은 데이터와 실증시험 데이터를 이용하였다. 결과적으로 제안한 기법은 배전선로에서 발생하는 고장유형을 빠르고 정확하게 판별할 수 있었다.
본 논문은 상대적으로 새로운 기법인 Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장 탐색과 진단 방법을 제안하고 있다. 본 연구에서는 롤링 베어링을 대상으로 고장을 탐색하고 진단하기 위한 방법을 제안하는데 Parzen Density Estimation과 Multi-class SVM은 고장 클래스를 잘 표현할 수 있다. Parzen Density Estimation은 새로운 패턴 데이터의 거절과 알려진 데이터 패턴의 밀도의 평가에 의해 새로운 패턴을 찾아낼 수 있고, Multi-class SVM 기반의 방법은 여러 클래스의 고장을 support vector로 표현하여 고장 패턴을 찾아낼 수 있다. 본 연구에서는 실제의 다중 클래스를 가지는 롤링 베어링의 고장 데이터를 사용하여 고장 패턴을 탐색하는 과정을 보여주는데, 커널함수의 적절한 파라미터의 선택에 의한 Multi-class SVM 기반의 방법이 multi-layer perceptron이나 Parzen Density Estimation 방법보다 우수함을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.