• Title/Summary/Keyword: 고장신호

Search Result 427, Processing Time 0.025 seconds

Verification of safety integrity for vital data processing device through quantitative safety analysis (정량적 안전성 분석을 통한 Vital 데이터 처리장치의 안전무결성 요구사항 검증)

  • Choi, Jin-Woo;Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4863-4870
    • /
    • 2015
  • Currently, as a priority to secure the safety of the railway signalling system, verification for satisfy of the safety integrity requirements(SIR) is required to the essential elements. Safety Integrity Requirements(SIR) verification is performed based on the system safety analysis. But the probability of securing basic data for system safety analysis significantly dropped because there is no experience yet performed in the country. Therefore we are had to rely on a qualitative analysis. There are methods such as qualitative risk analysis matrix, and risk graphs. The qualitative analysis is wide, the width of the accident. However, the reliability of the result is significantly less has a disadvantage. Therefore, it should be parallel quantitative safety analysis of the system/products in order to compensate for the disadvantages of the qualitative analysis. This paper presents a quantitative safety analysis method to overcome the disadvantages of the qualitative analysis. And through a result, highly reliable Safety Integrity Requirements(SIR) verification measures proposed. Verification results, the dangerous failure incidence for vital data processing device was calculated to be $1.172279{\times}10^{-9}$. The result was verified to exceed the required safety integrity targets more.

Acoustic Emission Monitoring of Incipient Failure in Journal Bearing Part II : Intervention of Foreign Particles in Lubrication (음향방출을 이용한 저어널 베어링의 조기파손감지(II) - 윤활유 이물질 혼입의 영향 및 감시 -)

  • Yoon, Dong-Jin;Kwon, Oh-Yang;Jung, Min-Hwa;Kim, Kyung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.122-131
    • /
    • 1994
  • Journal bearings in the rotating machineries are vulnerable to the contamination or the insufficient supply of lubricating oil, which is likely to be the cause of unexpected shutdown or malfunction of these systems. Various destructive and nondestructive testing methods had been used for the reduction of maintenance cost and the operational safety problems due to the accidents related to bearing damages. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. Experimental schedules for the intervention of foreign particles was composed to be more quantitative and systematic than last study in consideration of minimum oil film thickness and particle size. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. Several parameters such as AE rms level, waveform, AE energy distribution and other AE event parameters are used for analysis and characterization of damage source. The results showed that the history of damage was well correlated with the changes of AE rms level and the type of damage source signal can be verified using other informations such as waveform, distributions of AE parameters etc.

  • PDF

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

Measurement of Rainfall Intensity Using a Weighting Tipping Bucket Raingauge (중량식 전도형 우량계를 이용한 강우강도 측정)

  • Kim Hyun Chul;Lee Bu Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2004
  • The instrument used in this study consists of a lkg capacity loadcell and a Imm tipping bucket rain gauge. There are two signals: one is the weight of the water in the tipping bucket and the other is the pulse from the reversing mechanism of the tipping bucket. The loadcell measures the weight of water with a 0.0lmm resolution up to 1mm rainfall and the bucket reverses beyond 1mm. From this point, a pulse signal generates and the loadcell starts measuring the weight again. A field test was carried out with the range of rainfall intensity from 42mm/h to 250mm/h. The result shows an error range from -2.2% to + 2.6% in 12 measurement cases with a rainfall of l00mm or more. This result satisfies the WMO recommendation for rainfall intensity instrumentation which allows a 5% range. In a field experiment during 17 to 19 August, 2004, more than 100mm/h rainfall intensity was observed by this instrument, confirming that our instrument has a sufficient capacity of rainfall intensity measurement under extreme conditions like Jangma (Bai-u season). Compared with existing commercial models which employ a water drop measurement method, our method can give a practical solution for diagnostic check of remote rain gauges using two independent signals.

Developing an Early Leakage Detection System for Thermal Power Plant Boiler Tubes by Using Acoustic Emission Technology (음향방출법을 이용한 발전용 보일러 튜브 미세누설 조기 탐지 시스템 개발 및 성능 검증)

  • Lee, Sang Bum;Roh, Seon Man
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.181-187
    • /
    • 2016
  • A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (ⵁ2, ⵁ5, ⵁ10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⵁ2 mm and ⵁ5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

A Study on Stabilization of Underwater TAS Winch System Deploy/Recover Operation Performance (수중용 TAS윈치 전개/회수 성능 안정화 방안에 관한 연구)

  • Chang, Ho-Seong;Cho, Kyu-Lyong;Hwang, Jae-Gyo;Lee, Sang-Yong;Kim, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.472-482
    • /
    • 2019
  • This paper describes the stabilization of underwater TAS winch system Deploy/Recover operation performance. TAS winch installed on the stern of submarine performs to deploy/recover sensor, towing cable and rope tail which is deployed from the stern and separated from submarine itself. Also TAS winch provides transmission path of power to the sensor and data transmitting/receiving path which data are acquired from underwater environment like sound, depth and temperature. At the step of TAS winch evaluation test, sporadic standstill and rotating speed oscillation phenomenon were occurred. Winch motor provides the available torque to deploy/recover TAS and root cause analysis to the winch motor was done to find exact reason to sporadic malfunction. When winch motor was disassembled, eccentricity of rotor, slip-ring and the other composition part for winch motor were found. These might cause magnetic field distortion. To make TAS winch system more stable and block magnetic field distortion, this paper suggests methods to enhance fixing status installed in winch motor. For reliable data acquisition for TAS winch operation, the deploy/recover function of the improved type of TAS winch was verified in LBTS making similar condition with sea status. At the end of stage, improved type of TAS winch was tested on some functions not only deploy/recover function, but sustainability of TAS operation on specific velocity, steering angle of submarine in the sea trial. Improved type of TAS winch was verified in accordance with design requirement. Also, validity of suggested methods were verified by the sea trial.

A Study on improvement of communication error between controllers for K56 ammunition transport vehicle (K56 탄약운반장갑차용 제어기 간 통신 오류 개선에 관한 연구)

  • Park, Joo-Young;Kim, Seong-Hoon;Noh, Sang-Wan;Park, Young-Min;Kim, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.781-788
    • /
    • 2021
  • This paper is the study of a design to eliminate the communication error that occurs between the main controller and the servo controller of the K56 ammunition-carrying armored vehicle. The K56 assists in the operation of the K-55A1 self-propelled gun by automating the supply and loading of ammunition. The CAN communication board of the ammunition carrier is a key-function product mounted inside the main controller and installed for communication with the servo controller. It was confirmed that an undefined error would occur intermittently in the existing CAN communication board, interrupting the operation of the ammunition supply system during the loading process. In this paper, in order to solve the problem, the cause of the failure is identified through analysis and a functional test of the communication signal between the main controller and the servo controller. The error was resolved by redesigning and improving the Read/Write algorithm. Finally, the proposed cause analysis and design effectiveness were verified through the CAN communication board single item test and a system equipment application test. It is expected that this study will serve as a reference for improving defense capabilities through improving the reliability of CAN communication boards and by improving the reliability of the overall electronic equipment using DPRAM.