• Title/Summary/Keyword: 고장모드 시뮬레이션

Search Result 25, Processing Time 0.02 seconds

A Study of Hazard Analysis and Monitoring Concepts of Autonomous Vehicles Based on V2V Communication System at Non-signalized Intersections (비신호 교차로 상황에서 V2V 기반 자율주행차의 위험성 분석 및 모니터링 컨셉 연구)

  • Baek, Yun-soek;Shin, Seong-geun;Ahn, Dae-ryong;Lee, Hyuck-kee;Moon, Byoung-joon;Kim, Sung-sub;Cho, Seong-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.222-234
    • /
    • 2020
  • Autonomous vehicles are equipped with a wide rage of sensors such as GPS, RADAR, LIDAR, camera, IMU, etc. and are driven by recognizing and judging various transportation systems at intersections in the city. The accident ratio of the intersection of the autonomous vehicles is 88% of all accidents due to the limitation of prediction and judgment of an area outside the sensing distance. Not only research on non-signalized intersection collision avoidance strategies through V2V and V2I is underway, but also research on safe intersection driving in failure situations is underway, but verification and fragments through simple intersection scenarios Only typical V2V failures are presented. In this paper, we analyzed the architecture of the V2V module, analyzed the causal factors for each V2V module, and defined the failure mode. We presented intersection scenarios for various road conditions and traffic volumes. we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to analyze the risk of autonomous vehicle based on the simulation. We presented ASIL, which is the result of risk analysis, proposed a monitoring concept for each component of the V2V module, and presented monitoring coverage.

Improvement of the Differential Current Relaying Method for Protecting the Transmission Line Equipped with UPFC (UPFC를 포함한 송전성에서의 전류차동 보호 방식의 개선)

  • Lim, Jung-Uk;Kwon, Young-Jin;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.40-47
    • /
    • 2005
  • The objective of this paper is to analyze power system dynamics influenced by UPFC(Unified Power flow Controller) operation and to develop a refined DCRM(Differential Current Relaying Method) to protect the transmission line with UPFC effectively. The implementation of control strategies for UPFC introduces new power system dynamic problems that must be considered while applying the conventional DCRM. In this paper, impact of UPFC operation on the DCRM has been reviewed and a refined DCRM has been proposed to detect faults properly in spite of UPFC operation. The porposed method is verified by simulation on the line-faulted system with UPFC.

Development of the Inverter System with UPS Function for the Air-Conditioning Blower (UPS 기능을 갖는 A/C Blower용 인버터 시스템 개발)

  • Lim, Seung-Beom;Lee, Yun-Ha;Mok, Hyung-Soo;Ji, Jun-Keun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.302-308
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air Conditioning) system is only controlled by turn on/turn off operations with AC 380V input. Therefore, the efficiency of the system is reduced and accoustic noise problem occurs. Also, the blower is shut down at the AC power failure. In this paper, the inverter system with UPS function for the A/C(Air Conditioning) blower is proposed. Proposed inverter system which is powered from the AC and DC voltage can control speed, operation mode, and soft-start time using CAN communication. In case of the CAN communication failure, RS-232 communication could be used to control the hardware directly by the engineer that can solve existing problems. To verify the validity of proposed inverter system, simulations and experiments are carried out.

Optimal Operation Algorithm of Protection Devices in Distribution Systems With PV System (대용량 태양광전원이 연계된 배전선로에 있어서 보호협조기기의 최적 운용알고리즘)

  • Kwon, Soon-hwan;Lee, Hu-dong;Nam, Yang-hyun;Rho, Dae-seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.17-26
    • /
    • 2018
  • If a photovoltaic (PV) system is installed in a primary feeder interconnected with the PV system, bi-directional power flow can occur, and then, the magnitude and direction of the fault current can change, depending on the fault location and point of common coupling (PCC) of the PV system, and the time current curve (TCC) cannot be properly coordinated between protection devices. Also, it is difficult to obtain a proper time interval for protection devices because the conventional setting approach is applied, even though the PV system is installed and operating. Therefore, this paper presents three operation modes considering the operational conditions of the PV system to obtain setting values for protection devices. Based on the mode, this paper proposes an algorithm to calculate the optimal protection coordination time interval according to the introduction capacity of the PV system. In addition, this paper performs modelling of a distribution system with the PV system and protection devices by using Off-DAS S/W, and analyzes the characteristics of the time interval between the protection devices, such as substation relays, reclosers, customer relays, and PV customer relays. The simulation results confirmed that the proposed operational modes and setting-value algorithms are useful and effective for protection coordination in a distribution system for a PV system.

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF