• Title/Summary/Keyword: 고자유도 로봇

Search Result 3, Processing Time 0.016 seconds

Robust Impedance Control of High-DOF Robot Based on ISMC and DOB (ISMC와 외란관측기 기반 고자유도 로봇의 강인한 임피던스제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Kim, Min-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-179
    • /
    • 2017
  • This paper proposes a robust impedance controller for high-DOF robots. The model-based control of a higher DOF robot uses a numerical dynamic model because the analytical dynamic model is difficult to be derived and this means that modeling error is inevitable. The impedance control in the task space is affected by joint motions and has more difficulties in the higher DOF robots. In addition, the disturbances must be decoupled in the control of high DOF robot. This paper proposes a robust impedance controller based on integral sliding mode control (ISMC) and disturbance observer(DOB) for high-DOF robot manipulator. The ISMC is used to improve the robustness of the impedance control and to preserve its nominal performance. DOB is also employed to cancel the effects of input disturbances and to reduce the maximum gain of the ISMC which eventually determines the input chattering size.

Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance (잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어)

  • Kim, Junhyuk;Park, Seungkyu;Yoon, Taesung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.

Sliding Mode Prediction Based Tracking Control for Mobile Robots (슬라이딩 평면 예측에 기반한 이동 로봇의 경로 추종 제어)

  • Moon, Ssu-Rey;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.448-449
    • /
    • 2008
  • 본 논문에서는 이동 로봇의 경로 추종을 위해서, 비선형 모델 예측 슬라이딩 모드 제어(nonlinear model predictive strung mode control) 기법을 제안한다. 본 논문에서 제안한 방법에서는 미래의 슬라이딩 평면을 예측하고, 이에 따른 최적화된 제어기를 유도함으로써 슬라이딩 모드 제어기 단독으로 사용하는 제언 시스템에 비해 성능을 향상시킬 수 있다. 마지막으로 컴퓨터 시뮬레이션을 통해 본 논문에서 제안한 제어기의 성능을 검증하고자한다.

  • PDF