• Title/Summary/Keyword: 고유 주파수

Search Result 602, Processing Time 0.025 seconds

Response Characteristics of Forced Vibration of High Damping Vehicle Passing the Bumped Barrier (둔턱을 진행하는 고감쇠 차량의 강제진동 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2021
  • The response characteristics of the forced vibration generated when the high-damped vehicle pass the bumped barrier was studied, and in particular, the response behavior of displacement, velocity and acceleration was analyzed for the forced vibration model. In addition, in order to obtain responses such as displacement, velocity, and acceleration, a numerical analysis technique of the Runge-Kutta-Gill method was performed in time domain. The response was successfully obtained in detail under several high damping conditions. As a numerical analysis result, the response of the vehicle was obtained by considering the vehicle body to which the impulse impact was applied. Also, the analysis result was compared with the experimental result in order to verify the validity of vehicle model. The amplitude and natural frequency of the vehicle were considered and analyzed. The Nyquist diagram of the vehicle model was also obtained and the relationship could be analyzed. And the vibration response was analyzed on different mass, damping and stiffness.

Yaw Gearbox Design for 4MW Class Wind Turbine (4MW급 풍력발전기용 요 감속기 설계)

  • Lee, Hyoung-Woo;Kim, In-Hwan;Lee, Jae-Shin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.142-148
    • /
    • 2022
  • In this paper, the weight reduction design of the yaw gearbox for wind turbine was performed through the finite element analysis method, and the stability was checked by performing the critical speed analysis. The weight reduction product can improve engine efficiency, save parts materials, and earn economic benefits. The yaw gearbox is lightweighted with the goal of achieving a safety rate of 1.3 or higher for wind turbine as indicated by IEC61400-1. In order to reduce the weight of the carrier, a topology optimization method was performed. The safety factor was verified by performing finite element analysis on the carrier. In addition, the housing and carrier were modeled using the finite element method, and the gear train was modeled using MASTA. For the yaw gearbox, the housing and carrier FE model and the gear train model were connected by the partial structural synthesis method to perform the rotational vibration analysis. Vibration excitation sources are mass unbalance and gear mesh frrequemcy, and as a result of the critical speed analysis, it was found that there was no resonance within the operating speed range.

Acoustic Properties of Ultrasonic Transducer Using Piezocomposites (압전복합재료를 이용한 초음파 트랜스듀서의 음향 특성)

  • Lee, Sang-Wook;Ryu, Jeong-Tag;Nam, Hyo-Duk;Kim, Yeon-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.80-86
    • /
    • 2007
  • We have investigated on the development of 2-2 type piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 type piezocomposites sensor which was fabricated using dice-and-fill technique for the different volume fraction of PZT. The specific acoustic impedance of 2-2 type piezocomposites decreased linearly when PZT volume fraction was decreased. The resonance characteristics measured by an impedance analyzer(HP4194A) were similar to the analysis of finite element method (FEM). The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics show that the 2-2 type piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

The Availability of Amplitude, Asymmetry and Mean Frequency of Alpha Intrinsic Rhythm in Old Age as Brain Health Indicators (노년기 알파 고유리듬 진폭, 비대칭 및 평균 주파수의 뇌건강 지표로써 활용 가능성 연구)

  • Shim, Jun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.124-132
    • /
    • 2020
  • This study examines the clinical availability of alpha amplitude, asymmetry and mean frequency in old age as EEG indexes reflecting brain health condition. The EEGs of prefrontal lobes in eye closure state were measured for 4 minutes with 72 male and female elderly people aged 73. Subjects were divided into higher and lower groups based on average values of alpha amplitude, asymmetry and mean frequency. The results of correlations and t-test among EEG indexes were as follows. First, the higher Alpha altitude was, the higher physical and mental stress resistance and left-to-right brain communication were, and the lower mean Alpha mean frequency location was. The higher Alpha asymmetry was, the lower left-to-right communication level was. Second, as Alpha power of right brain was higher than that of left brain, Alpha amplitude and mental stress resistance and left-to-right brain communication level were higher. Third, as Alpha mean frequency location was higher, Alpha amplitude and mental anti-stress level were lowered and arousal level was enhanced. These high correlations and complementary meaning among quantitative EEG indicators demonstrated the possibility of biomarkers reflecting brain health state in old age.

Design of Moving Magnet Type Optical Pickup Actuator with High Frequencies of the Flexible Modes (높은 유연 모드 주파수를 갖는 가동 자석형 광 픽업 액추에이터 개발)

  • Song, Myeong-Gyu;Kim, Yoon-Ki;Park, Young-Pil;Yoo, Jeong-Hoon;Park, No-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1043-1049
    • /
    • 2007
  • Data transfer rate and storage capacity are main criteria of the performance of the optical disk drive. The highest data transfer rate and the largest storage capacity is most desirable. To increase these performances, the actuator of the optical disk drive should have a high servo bandwidth to compensate the vibration of an optical disk. The servo bandwidth is limited by some flexible modes of the actuator, thus it is essential to increase the natural frequencies of the flexible modes. In this paper, we suggested a moving magnet type actuator having high frequencies of the flexible modes. Generally, the moving magnet type actuator has an advantage to increase the natural frequencies of the flexible modes because the moving magnet type actuator has simple structure and the Young's modulus of magnet is high. However, large moving mass and inefficiency of EM(electromagnetic) circuit cut down driving sensitivities of the actuator. To improve driving sensitivities, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, driving sensitivities and the natural frequencies of the flexible modes were improved by using DOE(design of experiments) for electromagnetic circuit and modifying the lens holder.

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

Seismic Response from Microtremor of Chogye Basin, Korea (초계분지의 상시미동 지진응답)

  • Lee, Heekyoung;Kim, Roungyi;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.88-95
    • /
    • 2017
  • Chogye basin, which is surrounded by country rock, has a closed-basin form. In such a basin, incident seismic energy can form multiply reflected waves, thus causing energy concentration to occur at this closed-basin area. Microtremor measurement survey was performed at the Chogye basin, which is located in Chogye-myeon and Jeokjungmyeon, Hapcheon-gun, Gyeongsangnam-do, Republic of Korea. Microtremor data were transformed into the frequency domain, and then the horizontal-to-vertical spectral ratios (HVSR) were calculated. Fundamental resonance frequencies were estimated from the HVSR results for every observation point. Using the empirical relationship between site period and thickness for sediment sites in Korea known from the previous study, the distribution of sediment thickness of the Chogye basin was estimated from the fundamental resonance frequencies. Being compared with the mountainous rim with steep slope, the measurement points inside the basin have low values of the fundamental resonance frequency with the minimum of 1.03 Hz, which corresponds to the thickness of sedimentary layer with the maximum depth of about 100 m. A three-dimensional basin model was constructed for bedrock topography of the Chogye basin by an interpolation of basin depths estimated at each measurement site.

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

Dynamic Test of Structural Models Using $4m{\times}4m$ Shaking Table ($4m{\times}4m$ 진동대를 이용한 구조모델의 동적실험)

  • 이한선;우성우;김병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • The objective of this study is to review the current state of earthquake simulation tecniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f) and three d.o.f aluminium shear models were used and $4m{\times}4m$ 6 d.o.f shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the actual acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in Fourier transform amplitude. Free vibration and white noise tests have shown almost the some values for natural frequencies, but shown quite different values for damping rations, that is, 1.37% in case of free vibration test vs 14.76 % in case of white noise test. The time histories of story shear driff show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF