Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.128-130
/
2019
최근 딥러닝의 급격한 발전과 함께 얼굴표정 인식(facial expression recognition) 기술이 상당한 진보를 이루었다. 얼굴표정 인식은 컴퓨터 비전 분야에서 지속적으로 관심을 받고 있으며, 인포테인먼트 시스템(Infotainment system), 인간-로봇 상호작용(human-robot interaction) 등 다양한 분야에서 활용되고 있다. 그럼에도 불구하고 얼굴표정 인식 분야는 학습 데이터의 부족, 얼굴 각도의 변화 또는 occlusion 등과 같은 많은 문제들이 존재한다. 본 논문은 얼굴표정 인식 분야에서의 위와 같은 고유한 문제들을 다룬 기술들을 포함하여 고전적인 기법부터 최신 기법에 대한 연구 동향을 제시한다.
색상정보는 물체의 특성을 나타내는 고유한 특징점이 될 수 있으며, 물체를 인식하는데 중요한 정보를 제공한다. 색상정보를 이용한 얼굴영역의 추출은 얼굴의 방향이나 형태의 변화에 덜 민감하고 그 추출속도가 빠르다는 장점 때문에 많이 사용된다. 그러나 색상정보는 조명의 변화에 따라 민감하게 바뀐다는 단점을 가진다. 또한 실내환경에서 피부색과 유사한 배경이나 배경물체들이 많이 존재한다. 이러한 조명의 변화나 배경들이 존재하는 경우에 피부색을 이용한 얼굴 추출은 실패하기 쉽다. 본 논문에서는 이러한 단점을 극복하기 위하여 피부색상 모델의 추적을 행하였으며, 얼굴의 움직임데이터로부터 타원근사를 이용하는 방식을 제안하였다. 또한 카메라는 팬틸트 장치에 탑재되어서 사람의 얼굴을 추적하도록 하였다.
본 논문은 조명 변화, 표정 변화, 부분적인 오클루전이 있는 얼굴 영상에 강인하고 적은 메모리양과 계산량을 갖는 효율적인 얼굴 인식 방법을 제안한다. SKKUface(Sungkyunkwan University face)라 명명한 이 방법은 먼저 훈련 영상에 PCA(principal component analysis)를 적용하여 차원을 줄일 때 구해지는 특징 벡터 공간에서 조명 변화, 얼굴 표정 변화 등에 해당되는 공간이 최대한 제외된 새로운 특징 벡터 공간을 생성한다. 이러한 특징 벡터 공간은 얼굴의 고유특징만을 주로 포함하는 벡터 공간이므로 이러한 벡터 공간에 Fisher linear discriminant를 적용하면 클래스간의 더욱 효과적인 분리가 이루어져 인식률을 획기적으로 향상시킨다. 또한, SKKUface 방법은 클래스간 분산(between-class covariance) 행렬과 클래스내 분산(within-class covariance) 행렬을 계산할 때 문제가 되는 메모리양과 계산 시간을 획기적으로 줄이는 방법을 제안하여 적용하였다. 제안된 SKKUface 방법의 얼굴 인식 성능을 평가하기 위하여 YALE, SKKU, ORL(Olivetti Research Laboratory) 얼굴 데이타베이스를 가지고 기존의 얼굴 인식 방법으로 널리 알려진 Eigenface 방법, Fisherface 방법과 함께 인식률을 비교 평가하였다. 실험 결과, 제안된 SKKUface 방법이 조명 변화, 부분적인 오클루전이 있는 얼굴 영상에 대해서 Eigenface 방법과 Fisherface 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.
In this study, we deal with face recognition using fuzzy-based Fisherface method. The well-known Fisherface method is more insensitive to large variation in light direction, face pose, and facial expression than Principal Component Analysis method. Usually, the various methods of face recognition including Fisherface method give equal importance in determining the face to be recognized, regardless of typicalness. The main point here is that the proposed method assigns a feature vector transformed by PCA to fuzzy membership rather than assigning the vector to particular class. In this method, fuzzy membership degrees are obtained from FKNN(Fuzzy K-Nearest Neighbor) initialization. Experimental results show better recognition performance than other methods for ORL and Yale face databases.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.12
/
pp.2622-2627
/
2010
The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.05a
/
pp.801-804
/
2008
During face recognition process, face detection process is most preceding process. However, face has very high floating property, so the result could be very different according to which method we used. This paper studies about eye detection and eye blinking verification using edge and color information from YCbCr distribution map, segmentation, and labeling methods.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.286-288
/
2001
최근 네트워크의 발전과 인터넷을 통한 가상대학의 급속한 활성화는 상대방을 확인 및 검증할 수 있는 다양한 인식기술을 요구하고 있다. 본 논문에서는 이러한 문제점을 해결하는 방안으로 얼굴인식 기술에 기반한 가상대학 수강자 인식시스템을 설계 및 구현한다. 구현된 시스템에서는 얼굴영역 검출을 위하여 얼굴 구성의 사전지식을 이용한 평균 일괄컬러 분포도 구성에 의한 검출방법과 고유특징을 추출하기 위하여 얼굴 구성요소의 평균 히스토그램 분포도 구성에 의한 추출 방법을 제시한다. 그리고 실험에 의하여 제안된 시스템이 실시간 계산을 요구하는 시스템에 적절하며 가상대학 적용에 효율적임을 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.321-324
/
2002
본 논문에서는 다양한 환경하에서 인간의 식별과 감정을 인식할 수 있는 감정 인식 알고리즘을 제안한다. 제안된 알고리즘을 구현하기 위해, 먼저, CCD 칼라 카메라에 의해 획득한 원 영상으로부터 피부색을 이용해 얼굴영상을 얻는 과정을 거친다. 그 다음, 주요 요소분석을 기본으로 하는 얼굴인식기술인 Eigenface를 사용하여 이미지들을 고차원의 픽셀공간으로부터 저차원공간으로의 변환하는 파정을 거친다. 제안된 개인에 대한 식별과 감성인식은 사용한 특징벡터들의 추출로 인한 Eigenface의 가중치와 상관관계를 통해 이루어진다 즉, 영상의 가중치로부터 개인에 대한 식별과 감성정보를 찾는 방법을 제안한다. 마지막으로, 실험을 통해 제안된 방법의 응용가능성을 보인다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2006.05a
/
pp.800-803
/
2006
In this paper, we propose a method for improving the performance of the face recognition using a hybrid neural network. The propose method focused on improving face recognition technique using SOM and LVQ. In order to verify the effectiveness of the proposed method, we performed simulations on face database supplied ORL. The results show that the proposed method considerably improves on the performance of the eigenface, hidden markov model, multilayer neural network.
사건 발생 후의 대응이 아닌 영상 분석을 통해 실시간으로 위협 상황에 대응할 수 있는 지능형 영상 보안 기술이 매우 중요한 이슈가 되고 있다. 본 논문에서는 지능형 영상 보안에 사용할 수 있는 실시간 얼굴 인식 및 추적 기법을 제안한다. 사람의 정면 얼굴 영상을 ASM(Active Shape Model) 알고리즘을 이용하여 정규화 시키고 Gabor Wavelet Filter를 이용하여 얼굴 고유 특징 벡터를 추출하여 인식에 사용하였다. 인식이 완료된 얼굴은 Camshift와 Kalman Filter를 이용하여 카메라 감시 영역에서 벗어날 때까지 강건한 추적을 통하여 관리자가 실시간으로 확인 및 대응할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.