Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.201-204
/
2005
동영상에서 얼굴을 인식하는 기술은 Eigen-Face를 이용하는 방법, 템플릿을 이용하는 방법 등과 같이 다양한 방법이 연구되어지고 있다. 하지만 이들 기법들이 모두 동영상에서 얼굴영역을 검출했을지는 모르지만 얼굴영역이 영상에서 차지하는 위치와 크기를 일정하게 제한하고 있다. 그 중에서 입력되는 영상이 촬영 도구로부터 제한된 거리에서 촬영되어 얻어 지거나 실험을 통해 얻어진 영상을 이용하여 얼굴영역을 검출한다. 하지만 실제 다양한 응용분야에서 얼굴영역 검출 기술을 이용하기 위해서는 이러한 제한된 입력 영상뿐만이 아니라 어떠한 환경에서의 입력 영상에서도 얼굴영역을 검출할 수 있어야 한다. 본 논문은 근거리뿐만이 아니라 원거리에서 획득한 영상에서도 얼굴영역을 검출할 수 있으며, 얼굴의 특징 추출과 예측기법을 통하여 보다 향상된 얼굴영역 검출을 할 수 있다. 움직임 정보와 얼굴색상정보를 이용하여 8x8블록을 만들고 이런 블록 정보들을 특정한 규칙에 적용함으로써 얼굴영역을 후보를 검출하게 된다. 그리고 후보 얼굴영역의 고유한 특징들을 추출하고 칼만 필터를 적용한 예측기법을 통하여 얼굴영역 판단하게 된다.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.5
/
pp.859-864
/
2017
IoT is a new emerging technology to lead the $4^{th}$ industry renovation and has been widely used in industry and home to increase the quality of human being. In this paper, IoT based face detection and recognition system for a smart elevator is developed. Haar cascade classifier is used in a face detection system and a proposed PCA algorithm written in Python in the face recognition system is implemented to reduce the execution time and calculates the eigenfaces. SVM or Euclidean metric is used to recognize the faces detected in the face detection system. The proposed system runs on RaspberryPi 3. 200 sample images in ORL face database are used for training and 200 samples for testing. The simulation results show that the recognition rate is over 93% for PP+EU and over 96% for PP+SVM. The execution times of the proposed PCA and the conventional PCA are 0.11sec and 1.1sec respectively, so the proposed PCA is much faster than the conventional one. The proposed system can be suitable for an elevator monitoring system, real time home security system, etc.
본 논문에서는 스케치 연산자를 적용하여 견실한 얼굴인식 방법을 제안한다. 제안된 방법은 인식 대상의 중요한 특성인 에지(edge), 벨리(valley) 및 질감(texture) 성분을 효과적으로 표현하기 위한 방법으로써, BDIP(block difference of inverse probabilities)를 사용하여 얼굴의 특징을 스케치 영상과 같이 나타내는 얼굴 영상을 획득한다. 그리고, BDIP 처리된 얼굴 영상은 입력 데이터의 차원 축소 및 얼굴 특징 벡터의 추출을 위해 PCA(Principal Component Analysis)를 수행한 후, Nearest Neighbor 분류기를 통해 인식을 수행한다. 제안된 방법의 성능을 평가하기 위하여, 일반적으로 많이 사용되는 HE(Histogram equalization)을 사용한 얼굴 인식 방법과의 비교를 수행한다. 실험결과, 본 논문에서 제안한 방법이 고유값이 적은 경우에 가장 높은 인식률을 나타내는 것을 알 수 있었다.
본 논문에서는 얼굴 인식의 성능을 효율적으로 향상시키기 위하여 Discrete Cosine Transform (DCT)와 Principal Component Analysis(PCA)에 기반한 새로운 특징 추출 방법을 제안한다. 얼굴 영상의 공간 영역은 DCT를 이용하여 주파수 영역으로 변환되며, DCT 도메인에서 얼굴 영상이 갖는 고유한 주파수 특성을 최적화 하는 주파수 밴드 영역을 추출한다. 차원이 축소된 데이터는 PCA 를 이용하여 데이터의 변별력에 가장 적합한 얼굴의 특징을 추출하고 Nearest Neighbor Classification 을 통해 본인여부를 확인 한다. 실험 결과 제안된 방법은 데이터의 차원을 효과적으로 축소하면서 기존의 얼굴 인식 방법에 비해 높은 인식률 향상을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.251-254
/
2005
본 논문은 유비쿼터스 컴퓨팅 환경 기반에서의 온라인 얼굴인식 시스템 구현을 기술한다. 구현된 시스템은 CMOS 카메라를 장착한 PDA를 이용하여 얼굴영상을 획득하고 이 영상을 무선랜을 이용하여 인증 서버로 전송하여 서버로부터 인증된 결과를 받도록 하였다. 먼저 클라이언트 측인 PDA에서는 등록과 인증을 확인할 수 있도록 임베디드 비주얼 프로그램으로 사용자 인터페이스를 구축하였다. 다음으로 서버 영역에서는 얼굴인식에서 탁월한 성능을 보이는 PCA와 LDA 알고리즘을 사용하여 PDA로부터 전송 받은 얼굴 데이터를 학습하고 인식한 결과를 재전송하는 부분이 구현되었다. 시스템 구현에서 실시간성을 확보하기 위해 PDA에서는 영상을 압축률 효과가 좋은 JPG 형식의 데이터로 서버에 전송하였다. 본 논문에서 구현한 시스템은 학습과정에서 미리 구한 고유값을 이용하여 테스트 얼굴영상을 같은 공간에 투영시켜 서로간의 유사도를 비교하도록 하여 얼굴인식 속도 및 성능을 개선하였다.
PCA 방법은 입력 차원을 수학적으로 줄일 수 있는 장점 때문에 패턴인식 부분에서 널리쓰이고 있다. 얼굴인식에서의 PCA는 학습 패턴의 분산을 최대로 하는 기저 벡터들인 고유얼굴을 만들어 얼굴인식이 필요한 영상을 이 기저 벡터에 투사시켜 이때 나온 인자들과 원래 각 개인의 대표 인자값과의 거리 비교로 얼굴을 인식하는 방법이다. 그러나 조명등의 영향에 매우 민감하며 거리값으로 얼굴을 인식하기 때문에 다양한 변화에 따라 오인식률이 높아진다. 이는 인식률을 높이고자 임계값을 높게 설정하는 과정에서 발생하는 오류이며, 이를 방지하기 위해 임계치를 낮게 설정하면 오거부율이 높아진다. 이에 본 연구에서는 PCA에 입력되는 패턴들을 사전에 비교, 분류하여 PCA 연산시에 분산과 변위를 최대한으로 가질 수 있도록 하였다. 그러하여, 기존의 PCA보다 상당히 낮은 임계값으로도 오거부율의 증가를 막았으며, 낮은 임계값 설정으로 인하여 오인식률을 낮추는 결과를 얻을 수 있었다. 이는 기존의 PCA 방법을 사용하는 인식시스템에서 종종 발생하는 허가되지 않아야 하는 외부인을 인증시키는 사례를 줄일 수 있다.
Kim, Jihwan;Kim, Doohyun;Kim, Jinwoo;Go, Youjune;Lee, Soowon;Lee, Jeongjin
Annual Conference of KIPS
/
2014.11a
/
pp.853-856
/
2014
본 연구에서는 유동인구 얼굴을 인식하기 위한 방법을 비교하고 유동인구 분석을 위한 얼굴 인식 알고리즘의 성능을 평가하는데 중점을 둔다. 현재 얼굴 인식 알고리즘의 종류는 매우 다양한데 건널목이라는 특정 공간을 제약하여 알고리즘들에 대한 평가와 분석을 통하여 앞으로 건널목 유동이구를 분석하기 위해 얼굴 인식 알고리즘을 사용하는 사용자에게 정보를 제공하고자 한다. 특히 Color Model 기반 얼굴 인식 알고리즘과 Haar-Like Feature 기반 얼굴 인식 알고리즘을 각각 이용하여 환경에 따른 성능을 비교 분석하고 그 평가를 한다.
Biometrics is essential for person identification because of its uniqueness from each individuals. Face recognition technology has advantage over other biometrics because of its convenience and non-intrusive characteristics. In this paper, we will present a overview of face recognition technology including face detection, feature extraction, and face recognition system. For face detection, we will describe template based method and face component based approach. PCA and LDA approach will be discussed for feature extraction, and nearest neighbor classifiers -will be covered for matching. Large database and the standardized performance evaluation methodology is essential in order to support state-of-the-art face recognition system. Also, 3D based face recognition technology is the key solution for the pose, lighting and expression variations in many applications.
Journal of the Korean Institute of Telematics and Electronics C
/
v.35C
no.10
/
pp.48-58
/
1998
We present a method that can recognize face images using independent component analysis that is used mainly for blind sources separation in signal processing. We assumed that a face image can be expressed as the sum of a set of statistically independent feature images, which was obtained by using independent component analysis. Face recognition was peformed by projecting the input image to the feature image space and then by comparing its projection components with those of stored reference images. We carried out face recognition experiments with a database that consists of various varied face images (total 400 varied facial images collected from 10 per person) and compared the performance of our method with that of the eigenface method based on principal component analysis. The presented method gave better results of recognition rate than the eigenface method did, and showed robustness to the random noise added in the input facial images.
Kim Young-Gil;Song Young-Jun;Chang Un-Dong;Kim Dong-Woo;Ahn Jae-Hyeong
Journal of the Korea Academia-Industrial cooperation Society
/
v.6
no.4
/
pp.291-295
/
2005
In this paper, we propose a face recognition method using modified 2-D PCA. While the previous PCA method computes the covariance matrix by using one dimensional vectors, the 2-D PCA method computes the covariance matrix by directly using direct two dimensional image, and extracts the feature vectors by solving eigenvalue problem. The proposed method recognizes the faces by applying the modified 2-D PCA to face images and it gets linear transformation matrix using two covariance matrices. The experimental results indicates that the proposed method improved about $1\%$ and achieved more stability in recognition rate than conventional 2-D PCA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.