• Title/Summary/Keyword: 고유 얼굴

Search Result 139, Processing Time 0.031 seconds

Tracking and Detection of Face Region in Long Distance Image (실시간 원거리 얼굴영역 검출 및 추적)

  • Park, Sung-Jin;Han, Sang-Il;Cha, Hyung-Tai
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.201-204
    • /
    • 2005
  • 동영상에서 얼굴을 인식하는 기술은 Eigen-Face를 이용하는 방법, 템플릿을 이용하는 방법 등과 같이 다양한 방법이 연구되어지고 있다. 하지만 이들 기법들이 모두 동영상에서 얼굴영역을 검출했을지는 모르지만 얼굴영역이 영상에서 차지하는 위치와 크기를 일정하게 제한하고 있다. 그 중에서 입력되는 영상이 촬영 도구로부터 제한된 거리에서 촬영되어 얻어 지거나 실험을 통해 얻어진 영상을 이용하여 얼굴영역을 검출한다. 하지만 실제 다양한 응용분야에서 얼굴영역 검출 기술을 이용하기 위해서는 이러한 제한된 입력 영상뿐만이 아니라 어떠한 환경에서의 입력 영상에서도 얼굴영역을 검출할 수 있어야 한다. 본 논문은 근거리뿐만이 아니라 원거리에서 획득한 영상에서도 얼굴영역을 검출할 수 있으며, 얼굴의 특징 추출과 예측기법을 통하여 보다 향상된 얼굴영역 검출을 할 수 있다. 움직임 정보와 얼굴색상정보를 이용하여 8x8블록을 만들고 이런 블록 정보들을 특정한 규칙에 적용함으로써 얼굴영역을 후보를 검출하게 된다. 그리고 후보 얼굴영역의 고유한 특징들을 추출하고 칼만 필터를 적용한 예측기법을 통하여 얼굴영역 판단하게 된다.

  • PDF

Development of a Face Detection and Recognition System Using a RaspberryPi (라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발)

  • Kim, Kang-Chul;Wei, Hai-tong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.859-864
    • /
    • 2017
  • IoT is a new emerging technology to lead the $4^{th}$ industry renovation and has been widely used in industry and home to increase the quality of human being. In this paper, IoT based face detection and recognition system for a smart elevator is developed. Haar cascade classifier is used in a face detection system and a proposed PCA algorithm written in Python in the face recognition system is implemented to reduce the execution time and calculates the eigenfaces. SVM or Euclidean metric is used to recognize the faces detected in the face detection system. The proposed system runs on RaspberryPi 3. 200 sample images in ORL face database are used for training and 200 samples for testing. The simulation results show that the recognition rate is over 93% for PP+EU and over 96% for PP+SVM. The execution times of the proposed PCA and the conventional PCA are 0.11sec and 1.1sec respectively, so the proposed PCA is much faster than the conventional one. The proposed system can be suitable for an elevator monitoring system, real time home security system, etc.

Face Recognition Using Sketch Operator (스케치 연산자를 이용한 얼굴 인식)

  • Choi, Jean;Chung, Yun-Su;Yoo, Jang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1189-1192
    • /
    • 2005
  • 본 논문에서는 스케치 연산자를 적용하여 견실한 얼굴인식 방법을 제안한다. 제안된 방법은 인식 대상의 중요한 특성인 에지(edge), 벨리(valley) 및 질감(texture) 성분을 효과적으로 표현하기 위한 방법으로써, BDIP(block difference of inverse probabilities)를 사용하여 얼굴의 특징을 스케치 영상과 같이 나타내는 얼굴 영상을 획득한다. 그리고, BDIP 처리된 얼굴 영상은 입력 데이터의 차원 축소 및 얼굴 특징 벡터의 추출을 위해 PCA(Principal Component Analysis)를 수행한 후, Nearest Neighbor 분류기를 통해 인식을 수행한다. 제안된 방법의 성능을 평가하기 위하여, 일반적으로 많이 사용되는 HE(Histogram equalization)을 사용한 얼굴 인식 방법과의 비교를 수행한다. 실험결과, 본 논문에서 제안한 방법이 고유값이 적은 경우에 가장 높은 인식률을 나타내는 것을 알 수 있었다.

  • PDF

Face Recognition Using Frequency Characteristics of Facial Images (얼굴 영상의 주파수 특성을 이용한 얼굴 인식)

  • Choi, Jean;Chung, Yun-Su;Yoo, Jang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.395-396
    • /
    • 2006
  • 본 논문에서는 얼굴 인식의 성능을 효율적으로 향상시키기 위하여 Discrete Cosine Transform (DCT)와 Principal Component Analysis(PCA)에 기반한 새로운 특징 추출 방법을 제안한다. 얼굴 영상의 공간 영역은 DCT를 이용하여 주파수 영역으로 변환되며, DCT 도메인에서 얼굴 영상이 갖는 고유한 주파수 특성을 최적화 하는 주파수 밴드 영역을 추출한다. 차원이 축소된 데이터는 PCA 를 이용하여 데이터의 변별력에 가장 적합한 얼굴의 특징을 추출하고 Nearest Neighbor Classification 을 통해 본인여부를 확인 한다. 실험 결과 제안된 방법은 데이터의 차원을 효과적으로 축소하면서 기존의 얼굴 인식 방법에 비해 높은 인식률 향상을 보였다.

  • PDF

Real -Time Face Recognition System using PDA (PDA를 이용한 실시간 얼굴인식 시스템 구현)

  • Kwon Man-Jun;Yang Dong-Hwa;Go Hyoun-Jo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.251-254
    • /
    • 2005
  • 본 논문은 유비쿼터스 컴퓨팅 환경 기반에서의 온라인 얼굴인식 시스템 구현을 기술한다. 구현된 시스템은 CMOS 카메라를 장착한 PDA를 이용하여 얼굴영상을 획득하고 이 영상을 무선랜을 이용하여 인증 서버로 전송하여 서버로부터 인증된 결과를 받도록 하였다. 먼저 클라이언트 측인 PDA에서는 등록과 인증을 확인할 수 있도록 임베디드 비주얼 프로그램으로 사용자 인터페이스를 구축하였다. 다음으로 서버 영역에서는 얼굴인식에서 탁월한 성능을 보이는 PCA와 LDA 알고리즘을 사용하여 PDA로부터 전송 받은 얼굴 데이터를 학습하고 인식한 결과를 재전송하는 부분이 구현되었다. 시스템 구현에서 실시간성을 확보하기 위해 PDA에서는 영상을 압축률 효과가 좋은 JPG 형식의 데이터로 서버에 전송하였다. 본 논문에서 구현한 시스템은 학습과정에서 미리 구한 고유값을 이용하여 테스트 얼굴영상을 같은 공간에 투영시켜 서로간의 유사도를 비교하도록 하여 얼굴인식 속도 및 성능을 개선하였다.

  • PDF

A Study on Face Recognition using Hierarchical Classification of Facial Principal Component (얼굴 주성분의 계층적 분류를 이용한 얼굴인식에 관한 연구)

  • Choi, Jae-Young;Kim, Nak-Bin
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.649-652
    • /
    • 2002
  • PCA 방법은 입력 차원을 수학적으로 줄일 수 있는 장점 때문에 패턴인식 부분에서 널리쓰이고 있다. 얼굴인식에서의 PCA는 학습 패턴의 분산을 최대로 하는 기저 벡터들인 고유얼굴을 만들어 얼굴인식이 필요한 영상을 이 기저 벡터에 투사시켜 이때 나온 인자들과 원래 각 개인의 대표 인자값과의 거리 비교로 얼굴을 인식하는 방법이다. 그러나 조명등의 영향에 매우 민감하며 거리값으로 얼굴을 인식하기 때문에 다양한 변화에 따라 오인식률이 높아진다. 이는 인식률을 높이고자 임계값을 높게 설정하는 과정에서 발생하는 오류이며, 이를 방지하기 위해 임계치를 낮게 설정하면 오거부율이 높아진다. 이에 본 연구에서는 PCA에 입력되는 패턴들을 사전에 비교, 분류하여 PCA 연산시에 분산과 변위를 최대한으로 가질 수 있도록 하였다. 그러하여, 기존의 PCA보다 상당히 낮은 임계값으로도 오거부율의 증가를 막았으며, 낮은 임계값 설정으로 인하여 오인식률을 낮추는 결과를 얻을 수 있었다. 이는 기존의 PCA 방법을 사용하는 인식시스템에서 종종 발생하는 허가되지 않아야 하는 외부인을 인증시키는 사례를 줄일 수 있다.

  • PDF

Face Recognition Algorithms for Analyzing Floating Population (유동인구 분석을 위한 얼굴 인식 알고리즘)

  • Kim, Jihwan;Kim, Doohyun;Kim, Jinwoo;Go, Youjune;Lee, Soowon;Lee, Jeongjin
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.853-856
    • /
    • 2014
  • 본 연구에서는 유동인구 얼굴을 인식하기 위한 방법을 비교하고 유동인구 분석을 위한 얼굴 인식 알고리즘의 성능을 평가하는데 중점을 둔다. 현재 얼굴 인식 알고리즘의 종류는 매우 다양한데 건널목이라는 특정 공간을 제약하여 알고리즘들에 대한 평가와 분석을 통하여 앞으로 건널목 유동이구를 분석하기 위해 얼굴 인식 알고리즘을 사용하는 사용자에게 정보를 제공하고자 한다. 특히 Color Model 기반 얼굴 인식 알고리즘과 Haar-Like Feature 기반 얼굴 인식 알고리즘을 각각 이용하여 환경에 따른 성능을 비교 분석하고 그 평가를 한다.

Face Recognition: A Survey (얼굴인식 기술동향)

  • Mun, Hyeon-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.172-177
    • /
    • 2008
  • Biometrics is essential for person identification because of its uniqueness from each individuals. Face recognition technology has advantage over other biometrics because of its convenience and non-intrusive characteristics. In this paper, we will present a overview of face recognition technology including face detection, feature extraction, and face recognition system. For face detection, we will describe template based method and face component based approach. PCA and LDA approach will be discussed for feature extraction, and nearest neighbor classifiers -will be covered for matching. Large database and the standardized performance evaluation methodology is essential in order to support state-of-the-art face recognition system. Also, 3D based face recognition technology is the key solution for the pose, lighting and expression variations in many applications.

  • PDF

Face recognition by using independent component analysis (독립 성분 분석을 이용한 얼굴인식)

  • 김종규;장주석;김영일
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.48-58
    • /
    • 1998
  • We present a method that can recognize face images using independent component analysis that is used mainly for blind sources separation in signal processing. We assumed that a face image can be expressed as the sum of a set of statistically independent feature images, which was obtained by using independent component analysis. Face recognition was peformed by projecting the input image to the feature image space and then by comparing its projection components with those of stored reference images. We carried out face recognition experiments with a database that consists of various varied face images (total 400 varied facial images collected from 10 per person) and compared the performance of our method with that of the eigenface method based on principal component analysis. The presented method gave better results of recognition rate than the eigenface method did, and showed robustness to the random noise added in the input facial images.

  • PDF

Face Recognition Using Modified Two-Dimensional PCA (변형된 이차원 PCA를 이용한 얼굴 인식)

  • Kim Young-Gil;Song Young-Jun;Chang Un-Dong;Kim Dong-Woo;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.291-295
    • /
    • 2005
  • In this paper, we propose a face recognition method using modified 2-D PCA. While the previous PCA method computes the covariance matrix by using one dimensional vectors, the 2-D PCA method computes the covariance matrix by directly using direct two dimensional image, and extracts the feature vectors by solving eigenvalue problem. The proposed method recognizes the faces by applying the modified 2-D PCA to face images and it gets linear transformation matrix using two covariance matrices. The experimental results indicates that the proposed method improved about $1\%$ and achieved more stability in recognition rate than conventional 2-D PCA.

  • PDF