• Title/Summary/Keyword: 고온연성

Search Result 81, Processing Time 0.018 seconds

Mechanical Aalloying Behavior of $Al_3$Hf 및 $Al_3$Ta Intermetallic Compounds by SPEX Mill and the Effect of Ternary Additions on the Formation of $Ll_2$ Phase (SPEX mill을 이용한 $Al_3$Hf 및 $Al_3$Ta 금속간화합물의 기계적합금화 거동과 $Ll_2$상형성에 미치는 제 3 원소 첨가의 영향)

  • Lee, Seong-Hun;Choe, Jong-Hyeon;Kim, Jun-Gi;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.569-574
    • /
    • 2000
  • To improve the ductility of $Al_3Hf$ and $Al_3Ta$ intermetallic compounds, which are the potential temperature structural materials, the mechanical alloying behaviour and the effect of ternary additions on the $Ll_2$ phase formation were investigated. During the mechanical alloying by the SPEX mill, the $Ll_2$ $Al_3Hf$ intermetallic compound was formed after 6 hours of milling in AL-25%Hf system. In AL-25%Ta system, however, only the $D0_{22}$ $Al_3Ta$ intermetallic compound was formed until 30 hours of milling and the $Ll_2$ phase was not observed. In AL-12.5%M-25%Ta(M=Cu, Zn, Mn, Fe, Ni) systems, the additions of Cu and Zn had no effect on the $D0_{22}$ structure of the binary $Al_3Hf$ and the additions of Mn, Fe and Ni produced the amorphous phase. Therefore it was considered that these ternary additions could not overcome the energy difference between $Ll_2$ and $D0_{22}$ structures in the $Al_3Hf$ intermetallic compound. In AL-12.5%M-25%Hf(M=Cu, Zn, Mn, Fe, Ni)systems, the additions of Cu and Zn did not affect the $Ll_2$ structure of the binary $Al_3Hf$ but the additions of oMn, Fe and Ni produced the amorphous phase as they did in AL-12.5%M-25%Ta systems. Therefore, it was considered that the Ni, Mn and Fe additions promote the formation of amorphous phase in $Al_3X$ intermetallic compounds.

  • PDF