• Title/Summary/Keyword: 고온설계

Search Result 813, Processing Time 0.028 seconds

Numerical Study of Combustion Characteristics and NO Emission in Swirl Premixed Burner (스월 예혼합 버너의 연소 특성 및 NO 배출에 관한 수치적 연구)

  • Baek, Gwang Min;Cho, Cheon Hyeon;Cho, Ju Hyeong;Kim, Han Seok;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.911-918
    • /
    • 2013
  • The combustion characteristics of an EV (Environmental Vortex) burner (double-cone burner) adopted in a gas turbines are numerically investigated. The mixing of fuel and air is analyzed for reduction of NO emission. To predict the correlation between NO emission and fuel-air mixedness, 1-step and 2-step chemistry models are adopted. The results calculated by 1-step chemistry showed that NO emissions increased by 2% in the case of degraded mixedness and by 169% in the case of improved mixedness, where the temperature in the flame zone was overestimated upstream of the cone. However, the corresponding results calculated by 2-step chemistry showed that NO emission increased by 3% and decreased by 5%, where the flame zone was not formed inside the cone. The latter results agree well with the experimental ones indicating an increase of 63% and decrease of 11% in the respective cases. Despite quantitative errors, NO emissions can be predicted reasonably by the application of the 2-step chemistry model adopted here and design modification of burner for NO reduction can be proposed based on the numerical data.

1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility (물 분무를 이용한 연소가스 냉각 1차원 해석)

  • Im, Ju Hyun;Kim, Myung Ho;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The cooling of hot exhaust gas is an important issue for the construction of combustor test facility. Water spray is an effective method for exhaust gas cooling due to its large latent heat in process of evaporation. In this study, 1-D analysis has been performed based on continuity, energy conservation, and saturated vapor property to understand water spray cooling of combustion gas. In the exhaust duct of combustor test facility, the injected water decreases combustion gas temperature, and evaporates in the combustion gas. However, some of the injected water is collected in the sump due to condensation. The evaporation of water helps combustion gas cooling, but causes pressure increase inside the exhaust duct due to increase of vapor pressure. These phenomena has been analyzed by 1-D modeling in this study. From 1-D analysis, the adequate mass flow rate of water spray to cool combustion gas and to avoid excessive pressure rise inside the exhaust duct has been decided.

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

Mid-loop 운전중 RHR 기능 상실사고시 최대압력 및 보조급수 공급 여유시간 분석

  • 김원석;정영종;장원표
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.473-480
    • /
    • 1996
  • 영광 3/4호기 mid-loop 운전중 잔열제거(RHR) 기능 상실사고시 열수력적 현상을 최적 전산코드인 CATHARE2를 이용하여 해석하였다. 이러한 사고시 열수력적 현상은 일,이차측 냉각재 방출유로와 계통내 비응축성 가스의 거동에 의해 크게 영향을 받는다. 본 연구에서는 2개의 경우를 모의하였는데, 하나는 계통내 방출유로가 있는 경우이며 다른 하나는 방출유로가 없는 경우를 계산하였다. 이 때 사용된 가정은 다음과 같다. (가) 계통은 부분충수 운전 상태로 상부에 비응축성 가스나 증기로 가득 차 있다. (나) 증기발생기는 1대만이 이용 가능하고 이차측은 습식보관 상태이며, 보조급수는 공급되지 않고 이차측 압력은 대기압 상태이다 (다) 사고는 원자로 정지후 2일후 발생한다. 이와같은 조건하에서 사고시 계통 최대압력은 방출유로가 있는 경우 사고후 6,000 초에 0.27 MPa이며, 방출유로를 통한 유량은 총 2.4 kg/s이다. 이 방출유량을 외삽하여 계통수위가 고온관 바닦까지 도달하는데 걸린 시간은 사고후 약 5.67시간이다. 증기발생기 U-튜브를 통한 열전달에 의해 이차측 증기 발생으로 이차측 수위가 하락하면 증기발생기 reflux cooling은 제한을 받을 수 있다. 이 경우 이차측 수위가 U-튜브의 active 영역 상부까지 도달하는데 걸리는 시간은 사고후 약 10시간으로 계산되었다. 그러므로 이 경우 보조급수 공급 여유시간보다 노심 노출시간이 더 빨리 도달하여 노심을 손상시킨다. 사고시 수위지시계는 계통감압에 큰 영향을 주지 못하기 때문에 가능한 빨리 닫아 계통 inventory를 유지하는 것이 이차측 보조급수공급보다 우선한다.합한 설계방안으로 분석되었다.크다는 단점이 있다.TEX>$_2$O$_3$ 흡착제 제조시 TiO$_2$ 함량에 따른 Co$^{2+}$ 흡착량과 25$0^{\circ}C$의 고온에서 ZrO$_2$$Al_2$O$_3$의 표면에 생성된 코발트 화합물을 XPS와 EPMA로 부터 확인하였다.인을 명시적으로 설명할 수 있다. 둘째, 오류의 시발점을 정확히 포착하여 동기가 분명한 수정대책을 강구할 수 있다. 셋째, 음운 과 정의 분석 모델은 새로운 언어 학습시에 관련된 언어 상호간의 구조적 마찰을 설명해 줄 수 있다. 넷째, 불규칙적이며 종잡기 힘들고 단편적인 것으로만 보이던 중간언어도 일정한 체계 속에서 변화한다는 사실을 알 수 있다. 다섯째, 종전의 오류 분석에서는 지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\

  • PDF

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.

Evaluation of the Microstructure and Mechanical Properties for Ni Superalloy Materials Using HIP and Post Heat Treatment (HIP과 열처리공정을 이용한 Ni기 초합금 소재의 미세조직 및 기계적 특성 분석)

  • Kim, Youngdae;Hyun, Jungseob;Chang, Sungyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.137-143
    • /
    • 2020
  • The CM247LC, a Ni-based superalloy material used for gas turbine hot gas path parts, is casted using directionally solidified technology to analyze the mechanical properties and microstructures through HIP (Hot Isostatic Pressing) and post-heat treatment, and to derive optimal HIP treatment conditions. The CM247LC material is being researched in various ways as an alternative material for prototyping gas turbine blades. In particular, the blade rotating part is exposed and operated in a high temperature and high-pressure environment, and when damaged, it may cause huge economic losses. Therefore, in order to use the CM247LC material as prototyping materials for gas turbine blades, the reliability of the microstructure and mechanical properties must be verified. In this study, after casting rod test specimens using CM247LC material by directionally solidified technology, after that the specimens were performed by HIP treatment and post-heat treatment to test two HIP conditions designed by KEPCO to derive the possibility of prototyping of CM247LC material and optimization of HIP treatment conditions. Additionally, the properties of CM247LC material were compared to the GTD111DS material using for 1,300℃ class gas turbine blades.

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor (연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석)

  • Choi, Jungwoon;Lee, Sunil;Park, Ki-Jung;Seo, KyoungWoo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • The domestic unique research reactor, HANARO (Hi-flux Advanced Neutron Application ReactOr), has been constructed with the open-pool, the core is submerged in, for the multi-purpose neutron application. The reactor has a primary cooling system to remove the fission heat from the core and its connected fluidic systems. Since the works are required at the reactor pool top as a characteristic of the research reactor, the radiation shall be minimized with the operation of the hot water layer system to avoid unnecessary radiation exposure on the workers during work at the pool top. Moreover, the pool water management system is connected to the reactor pool to maintain the pool temperature below $50^{\circ}C$ to minimize the uprising radioactive gas or impurity from the colder pool bottom. For the efficient flow rate of the PWMS, the thermal capacity of heat exchanger is selected with 260 kW in the normal operation condition. In this paper, the modeling is formulated to figure out whether or not each pool temperature maintains below the temperature limit and the calculation results show that the designed PWMS heat exchanger has enough capacity with the design margin regardless of the reactor operation mode.