• Title/Summary/Keyword: 고압 연료 펌프

Search Result 37, Processing Time 0.02 seconds

Fuel methanol as an alternative fuels (대체연료로서의 메타놀)

  • 장병주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.11-20
    • /
    • 1984
  • 이글에서는 메타놀의 성상과 재래의 내연기관에 메타놀을 사용하였을 때의 특성을 몇 가지 관 점에서 살펴보았다. 유리한 점으로 판단되는 사실은, 1)옥탄가가 높아 고압축비의채용으로 열 효율을 높일 수 있다. 2)기화참열이 크고 물과의 친화성이 좋다. 이러한 점은 내부냉각방식의 채용으로 이상적인 충상혼합기를 형성할 수가 있을 것이며, 현재의 내연기관의 냉각계통, 즉 방 열기, 물펌프, 냉각휜 등을 줄일 수 있을 것으로 본다. 또 NO.chi.의 배출을 저하시키는 이점도 있다. 3)단일성분 연료이므로 배기가스 조성이 단순하며 깨끗하다. 이는 배기공해상 메타놀연료가 석유계연료보다 유리하다. 그러나 메타놀기관은 앞으로 기술적 연구, 개선을 필요로 하는 점도 있다. 1) 메타놀의 가솔린과 비교하여 인화점이 높고 기화잠열이 커서 시동성이 나쁘고 2) 메타놀은 어느 종류의 금속, 프라스택, 도료 등을 부식시킨다. 3) 메타놀은 세탄가가 낮아, 압축점화는 무리이며 4) 발열량은 석유계 연료의 약 절반이다. 따라서 시동성, 재료, 착화방법, 개질 가스의 이용법, 내부냉각 등의 기술적인 문제가 개발된다면 질, 량, 가격적인 면에서도 내연기관용에는 메타놀이 유리하다고 본다. 그러나 현시점에서는 기관측으로 보아 자동차용연료로는 가솔린에 혼합하는 방법이고 그렇게 된다면 20-30%의 연료가 절감되리라고 믿는다.

  • PDF

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, and the turbine, respectively. The turbopump was reliably operated at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results of turbopump assembly test using real-propellant showed a good agreement with those of the turbopump component tests using simulant working fluid.

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.359-365
    • /
    • 2008
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, the turbine, respectively. The turbopump was run stably at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real-propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF

Study on effect of fuel property change on vehicle important parts and exhaust gas (연료 물성 변화가 자동차 주요부품 및 배출가스에 미치는 영향 연구)

  • Lee, Jung-Cheon;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.866-873
    • /
    • 2017
  • Exhaust regulations of automobile are being reinforced increasingly as environmental problems issues came to the fore by industrial development. However, it is known that the exhaust emission is not only influenced by the system of automobile but also the fuel properties. In particular, high-performance engines have required high-performance fuels with high lubricity as CRDI engines(diesel engine) have been developed and commercialized. This paper have examined that the fuel property variations affect a major parts and an exhaust gas of automobile. It was confirmed that the high pressure pump, the injector and the DPF(diesel particulate filter) were damaged and fuel efficiency was get worse due to use the fuel of lacking lubricity property($651{\mu}m$/quality standard: less in $400{\mu}m$). In addition, through an iron component was detected in the broken DPF, it was estimated that the breakage of the DPF was caused by the excessive exhaust of the particulate matter due to the iron component of the fuel.

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.

Characteristics of a High Pressure Accumulator Type Fuel Injection System (축압식 고압 연료분사펌프 시스템 특성 해석)

  • Park, Seok Beom;Koo, Ja Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.