• Title/Summary/Keyword: 고속 WPAN

Search Result 54, Processing Time 0.023 seconds

Packet Detection and Frequency Offset Estimation/Correction Architecture Design and Analysis for OFDM-based WPAN Systems (OFDM-기반 WPAN 시스템을 위한 패킷 검출 및 반송파 주파수 옵셋 추정/보정 구조 설계 및 분석)

  • Back, Seung-Ho;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • This paper presents packet detection, frequency offset estimation architecture and performance analysis for OFDM-based wireless personal area network (WPAN) systems. Packet detection structure is used to find the start point of a packet exactly in WPAN system as the correlation value passes the constant threshold value. The applied autocorrelation structure of the algorithm can be implemented simply compared to conventional packet detection algorithms. The proposed frequency offset estimation architecture is designed for phase rotation process structure, internal bit reduction to reduce hardware size and the frequency offset adjustment block to reduce look-up table size unlike the conventional structure. If the received signal can be compensated by estimated frequency offset through the correction block, it can reduce the impact on the frequency offset. Through the performance result, the proposed structure has lower hardware complexity and gate count compared to the conventional structure. Thus, the proposed structure for OFDM-based WPAN systems can be applied to the initial synchronization process and high-speed low-power WPAN chips.

Performance Analysis of Available Superframe Size and Device Discovery Time for Multi-hop Communications in IEEE 802.15.3 High-rate WPAN Mesh Network (IEEE 802.15.3 고속 WPAN 메쉬 네트워크의 멀티-홉 통신을 위한 가용 슈퍼프레임 크기와 디바이스 탐색 성능 분석)

  • Jung, Ssang-Bong;Yim, Soon-Bin;Kim, Hyun-Ki;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.350-357
    • /
    • 2007
  • The IEEE 802.15.3 high-rate WPAN has been developed to communicate with devices within l0m. A piconet consists of one Piconet Coordinator (PNC) and several devices. The devices associated with a parent piconet can become child PNCs in order to form child piconets. A mesh network made up of a parent piconet and several child piconets can support multi-hop communications. In this paper, we analyze the maximum level and the avaliable superframe size to make the best use of bandwidth for multi-hop communications, and compare the analysis with the simulation results in terms of time to discover devices for multi-hop communications. The average number of levels in mesh networks is shown to be about 1.9 when the number of devices increases within a fixed area. We have also shown that the maximum available superframe size is 52ms and the discovery time is approximately 155ms.

Resource Allocation Method in High-Rate Wireless Personal Area Networks (고속 무선 PAN에서의 자원 할당 방식)

  • Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • High-Rate Wireless Personal Area Networks (HR-WPANs) in IEEE 802.15.3 standard use a TIme Devision Multiple Access (TDMA) protocol to support isochronous traffic. Isochronous traffic requires a delay-bounded service. However, the HR-WPAN standard suffers from long access delay and association delay. In this paper, we propose an enhanced MAC protocol for the delay-bounded traffic. This proposed protocol provides a way that a central node is able to collect traffic status on all member nodes. Furthermore, by utilizing the information, a scheduling algorithm is also proposed in order to synchronize the instant of a packet transmission with that of the packet arrival. With the proposed protocol and algorithm, the delay of access and association can be reduced. Performance analysis is carried out and the significant performance enhancement is observed.

  • PDF

A Design for Improving Performance of Dynamic Traffic in High Rate WPAN (고속 WPAN의 동적 트래픽 성능 개선을 위한 구조 설계)

  • Kim, Ji-Eun;Lee, Sang-Jae;Jeon, Young-Ae;Choi, Sang-Sung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • The High Rate Wireless Personal Area Networks (WPAN) is mainly targeted to consumer electronics and portable communication devices which need high rates and QoS. To achieve these goals, the WPAN provides data rates up to 1Gbps and adopts a Time Division Multiple Access (TDMA) MAC protocol. Since IEEE 802.15.3 MAC is based on TDMA scheme, it has good performance in dealing with real traffics. But it does not give better results for dynamic traffic. For dynamic traffic, IEEE 802.15.3 MAC needs a kind of request and response policy that brings about the degradation of performance in order to adapt to network changes. To overcome this problem and enhance the data throughput, this paper proposes a superframe structure which uses the Enhanced Contention Access Period (ECAP) to transmit data during sleep-CTA in PM mode.

  • PDF

A Study on Performance Improvement of High- Rate WPAN using Hybrid MAC (고속 WPAN에서 Hybrid MAC을 이용한 성능 향상)

  • Park, Sung-Hyun;Rhee, Seung-Hyong
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.213-222
    • /
    • 2009
  • IEEE 802.15.3 HR-WPAN is designed to enable wireless connectivity of high-speed, low-power, low-cost multimedia-capable portable consumer electronic devices. For quality of service, the standard specifies the use of TDMA (Time Division Multiple Access). However, during low contention TDMA gives much lower channel utilization and higher delays than CSMA (Carrier Sensing Multiple Access) because in TDMA, a node can transmit only during its scheduled time slots whereas in CSMA, nodes can transmit at any time as long as there is no contention. By mixing CSMA and TDMA, Hybrid MAC becomes more robust to timing failures, time-varying channel conditions, slot assignment failures and topology changes than a stand-alone TDMA.

  • PDF

Location Dependent Scheduling in 802.15.3 High­rate WPAN (고속 무선 PAN(Personal Area Network)에서의 위치기반 동적 스케쥴링)

  • 곽동원;박무성;이승형;정창모;윤원용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.148-150
    • /
    • 2003
  • 무선통신에서의 전송 매체인 air interface는 주위의 여러 환경적인 요인에 의해서 다양한 에러가 존재할 수 있다. 더욱이 ad hoc 환경인 802.15.3 High­rate WPAN에서는 이러한 에러에 대한 의존도가 더욱 클 수 있다. 본 논문에서는 802.15.3의 MAC enhancement를 목표로 위치에 따라서 달라지는 에러를 이용해서 할당하는 채널 시간의 크기를 동적으로 변화시켜서 전체 채널 사용 효율을 향상 시키려고 시도한다.

  • PDF

Multi-hop Packet Relay MAC Protocol Considering Channel Conditions in UWB-based WPANs (UWB 기반의 WPAN에서 채널 상태를 고려한 다중 홉 중계 방식의 MAC 프로토콜)

  • Wang Weidong;Seo Chang-Keun;Jeong Soon-Gyu;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11B
    • /
    • pp.792-803
    • /
    • 2005
  • Ultra wide band (UWB) technology will be applied in the high rare wireless personal area networks (WPANs) for its high rate, low power, and innate immunity to multipath fading. In this paper, a power aware multi-hop packet relay MAC protocol in UWB based WPANs is proposed and a power aware path status factor (PAPSF), which is derived from SINR and power resource condition of each device, is used to select a suitable relay node. Compared with relaying by piconet coordinator (PNC), which is easily chosen by other ad hoc routing protocol, the new scheme can achieve hi임or throughput, decrease the time required for transmitting high power signal and we can easily distribute the battery power consumption from PNC to other devices in the piconet to prevent the PNC device using up its battery too fast and finally avoid PNC handover too frequently.