• Title/Summary/Keyword: 고속 특징점 히스토그램

Search Result 2, Processing Time 0.015 seconds

Effective Point Dataset Removal for High-Speed 3D Scanning Processes (고속 3D 스캐닝 프로세스를 위한 효과적인 점데이터 제거)

  • Lim, Sukhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1660-1665
    • /
    • 2022
  • Recently, many industries are using three dimensional scanning technology. As the performance of the 3D scanner gradually improves, a sampling step to reduce a point data or a remove step to remove a part determined to be noise are generally performed in post processing. However, total point data by long time scanning cannot be processed at once in spite of performing such those additional processes. In general, a method using a multi threaded environment is widely used, but as the scanning process work time increases, the processing performance gradually decreases due to various environmental conditions and accumulated operations. This paper proposes a method to initially remove point data judged to be unnecessary by calculating accumulated fast point feature histogram values from coming point data of the 3D scanner in real time. The entire 3D scanning process can be reduced using this approach.

Automatic Extraction of the Facial Feature Points Using Moving Color (색상 움직임을 이용한 얼굴 특징점 자동 추출)

  • Kim, Nam-Ho;Kim, Hyoung-Gon;Ko, Sung-Jea
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.55-67
    • /
    • 1998
  • This paper presents an automatic facial feature point extraction algorithm in sequential color images. To extract facial region in the video sequence, a moving color detection technique is proposed that emphasize moving skin color region by applying motion detection algorithm on the skin-color transformed images. The threshold value for the pixel difference detection is also decided according to the transformed pixel value that represents the probability of the desired color information. Eye candidate regions are selected using both of the black/white color information inside the skin-color region and the valley information of the moving skin region detected using morphological operators. Eye region is finally decided by the geometrical relationship of the eyes and color histogram. To decide the exact feature points, the PCA(Principal Component Analysis) is used on each eye and mouth regions. Experimental results show that the feature points of eye and mouth can be obtained correctly irrespective of background, direction and size of face.

  • PDF