• Title/Summary/Keyword: 고속 마찰 특성 평가시험기

Search Result 4, Processing Time 0.025 seconds

A Study on the Friction of Tire Tread Rubber using High-Speed Friction Test Machine (고속 마찰 특성 평가시험기 개발을 통한 타이어 트레드 고무의 마찰에 관한 연구)

  • Lee, Jin Koo;Lee, Dong Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.622-628
    • /
    • 2013
  • Due to the development of compounding technology, there is a considerable increase in the number of high performance rubbers in the world. Accordingly, there are rapid growing requests about high performance tires such as UHP tire and Run-flat tire. However, it is extremely difficult to investigate the friction coefficient of tire tread rubbers. An alternative solution must be developed with the reliability of high-speed linear friction test machines. The use of friction test machines can be expected to improve rubber friction researches. In this paper, we propose a new kind of high-speed linear friction test machine. We have designed and manufactured various mechanisms for friction tests. The final goals are to design and manufacture friction test machines that can investigate friction coefficients efficiently and rapidly. The performance of the proposed high-speed linear friction test machine is evaluated experimentally; however additional study should be necessary for safer and more reliable experimentation.

Study of Tribological Characteristics Between Metallic Friction Materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 2009
  • The tribiological characteristics such as friction coefficient, friction stability, wear rate and braking temperature between various types of metallic friction materials and heat resistant steel disk, were investigated by using lab-scale dynamometer. Friction materials for high speed train have higher friction coefficient and friction stability as compared to aircraft friction materials even though friction materials for high speed train have lower wear rate. In addition. Cu-matrix friction materials have higher temperature increase rate than Fe-matrix friction materials. All friction surfaces have Fe-base oxide layer after completing test.

Influence of Base Oils and Extreme Pressure Additives on Lubricity and Anti-Seizure Property of Lubricant in Cold Rolling (기유와 극압제가 압연유의 윤활성 및 내소부성에 미치는 영향)

  • 한석영;송교봉;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1363-1372
    • /
    • 1992
  • The effects on lubricity and the anti-seizure property of lubricant according to base oils and extreme pressure additives of sulfur type and phosphorous type in cold rolling were evaluated by a laboratory scale rolling mill, where the contact conditions between work roll and strip are very close to actual cold rolling mill. The important results were obtained as follows : (1) synthetic oil has better effect on lubricity than tallow, (2) lubricant with extreme pressure additives of sulfur type of phosphorous type has better effect than base oil noly, (3) the more amount of extreme pressure additives is, the better effect on lubricity is, (4) sulfur type has better effect on lubricity than phosphorous type and (6) phosphorous type has better effect on anti-seizure property than sulfur type.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.