• Title/Summary/Keyword: 고속 가공

Search Result 547, Processing Time 0.032 seconds

Experimental evaluation technique for condition monitoring of high speed machining (고속가공의 상태 감시를 위한 실험적 평가 기술)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.84-87
    • /
    • 2001
  • The high speed machining which cam improve the production and quality has been remarkable in die/mold industry with the growth of parts and materials industries. The speed of machine tool increases, but on the other hand, the response of sensors I not being improved. Therefore, the condition monitoring techniques for the machine too, tool and workpiece in high speed machining are incomplete. In this study, characteristics of the tool edge roughness were verified from the high frequency components of cutting force signals acquired by the high speed dynamometer. Also, the experimental evaluation technique for the machinability and condition monitoring in high speed machining was established by analyzing the cutting force, acceleration and surface roughness.

  • PDF

A Study on Automatic Compensation of Thermal Deformation Error for High Speed Feeding System (고속이송계의 열변형오차 자동보정에 관한 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • In the recent years, development of machine tool with high speed feeding system have brought a rapid increase in productivity. Practically, thermal deformation problem due to high speed is, however, become a large obstacle to realize high precision machining. In this study, therefore, the construction of automatic error compensation system to control thermal deformation in high speed feeding system with real time is proposed. To attain this purpose, high speed feeding system with feeding speed 60mm/min is developed and experimental equation for relationship between thermal deformation and temperature of ball screw shaft using multiple regression analysis is established. Furthermore, in order to analyze thermal deformation error, compensation coefficient is determined and thermal deformation experiments is carried out. From obtained results, it is confirmed that automatic error compensation system constructed in this study is able to control thermal deformation error within $15{\sim}20{\mu}m$.

  • PDF

A Study on the Design of Endmill Geometry in High Speed Machining (고속가공용 엔드밀의 형상설계에 관한 연구(2))

  • 고성림;배승민;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.19-22
    • /
    • 1997
  • The objective of this research is to use an analytical and experimental approach to develop optimal tool geometry for high speed machining. The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of endmill for the purpose of high speed machining, dut to the insufficient knowledge about process in high speed machining. In order to improve the cutting ability of endmill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force and wear test and surface roughness test from optimized and conventional cutter with the same cutting condition. Using various tools with different geometry, relationships between the tool geometry parameter, rake angle, clearance angle, lengh of cutter have been stuied.

  • PDF

Feedrate Scheduling for High Speed Machining Based on an Improved Cutting Force Model (향상된 절삭력 모델을 이용한 고속 가공의 이송속도 스케줄링)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes an analytical model of off-line feed rate scheduling to obtain an optimum feed rate for high speed machining. Off-line feed rate scheduling is presented as an advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the feed rate scheduling model was developed using a mechanistic cutting force model using cutting-condition-independent coefficients. First, it was verified that cutting force coefficients are not changed with respect to cutting speed. Thus, the feed rate scheduling model using the cutting-condition-independent coefficients can be applied to set the proper feed rates for high speed machining as well as normal machining. Experimental results show that the developed fred rate scheduling model makes it possible to maintain the cutting force at a desired level during high speed machining.

  • PDF

Development of High Speed mid-Mower for Tractor (II) (트랙터용 고속 미드 모어 개발(II))

  • Kim, Sam-Hee;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • In recent years, work to improve the power of a tractor has been in development. This study, using the mid-PTO power of a compact tractor, attempted to develop a high-speed mid-mower by setting the rotation to more than 3,000 RPM designed/manufactured major components of the high speed mid-mower. The performance of high-speed mid-mower was evaluated by the precision of straight bevel gears, and durability, the noise of the gearbox, the gearbox internal temperature, the maximum rotation speed of the mid-mowers, and the grass cutting test. Through the performance test results, the maximum number of revolutions of the mid-mower was measured over 3,000RPM, the gearbox noise and gearbox internal temperature satisfied the performance requirements of a high speed mid-mower.

A Study on Transition of Dimension Error and Surface Precision in High Speed Machining of Al-alloy (Al 합금의 고속가공에서 치수오차와 표면정도 추이고찰)

  • 정문섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.96-102
    • /
    • 2000
  • High speed machining aims to raise the productivity and efficiency by making more precise and higher value-added products than any other machining method by means of the high speediness of spindle and feed drive system. The purpose of this study is to investigate the effects of the run-out of endmill on the dimension precision of workpiece and to obtain the fundamental data on high speed machining which is available by machining the side of Al-alloy with solid carbide endmills in high speed machining center and by measuring dimensions and surface roughness. From the results of experimentation following are obtained ; if spindle speed is ultra high in conditions that radial depth of cut and feed per tooth are very small highly precise and accurate products are to be made efficiently with high feed rate. and so we can raise productivity.

  • PDF

The Characteristics of Cutting Force and Surface Roughness According to Tool Tilting Angle in 5-axis High Speed Machining of Molds (금형의 5축 고속가공에서 공구 틸팅각에 따른 절삭력에 표면거칠기 특성)

  • Kang, Ik-Soo;Kim, Jeong-Suk;Kim, Suk-Won;Lee, Ki-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.63-69
    • /
    • 2007
  • The high speed machining has been widely applied to manufacture dies and machine elements in industrial field. Especially, 5-axis milling has been employed to produce a wide range of turbine blades, impellers and complex molds. In this study, the machining characteristics of injection molds were investigated according to tool tilting angles in 5-axis milling. The cutting force and surface roughness were investigated with various tool tilting angles. When the tool tilting angle was over than 10 degree, the characteristics of cutting force and surface roughness were improved in machining of Al alloy.

Characteristic Test of High Force Linear Motor Feed Unit for High Speed Machine Tool (고속가공기용 고추력 리니어모터 이송계의 특성 평가)

  • 송창규;황주호;박천홍;이후상;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.977-981
    • /
    • 2000
  • Direct drive linear motors have large potential for use as high speed machine tool feed units since they can increase machining rates and improve servo accuracy by eliminating gear related machining problems. So, in this paper, characteristic of 2-axis linear motor feed unit are studied and control gain are adjusted considering positioning, velocity, acceleration and static stiffness. We confirm linear motor feed unit are affected value of control gain sensitively, because drive directly. From the experiment, this feed unit has l${\mu}{\textrm}{m}$ micro step resolution, 5.7${\mu}{\textrm}{m}$ positioning accuracy and under 60${\mu}{\textrm}{m}$ circularity.

  • PDF

Development of Geometric Design S/W for High Speed End Mill (고속가공용 엔드밀 형상설계 S/W 개발)

  • 한창규;고성림;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.422-427
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and to develop a software for design of end mill geometry.

  • PDF

Simulation of surface profile using accelerometer in high speed end milling (고속 엔드밀 가공시 가속도계를 이용한 표면형상 시뮬레이션)

  • 이기용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.321-325
    • /
    • 2000
  • To obtain precise surface and high productivity, high speed end milling has been studied recently. Though high speed end milling is explicitly effective for precision surface generation geometrically, tool deflection, chatter vibration and frequency characteristics of end milling system deteriorate the theoretical surface. In this study, simulation algorithm and programming method are suggested to simulate machined surface using acceleration signal in high speed end milling. This simulation is conducted by considering vibrational effect of spindle system which was not considered by other researchers. Between simulated results and experiment results, good agreements were obtained.

  • PDF