• Title/Summary/Keyword: 고속절삭가공

Search Result 147, Processing Time 0.027 seconds

Optimization cutting speed in high speed ball end milling (고속 볼 엔드밀 가공에서 절삭속도 최적화)

  • 김경균;강명창;정융호;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

A Study on the Evaluation of End Mills for High Speed Machining (고속용 엔드밀의 성능평가에 관한 연구)

  • 이정길;유중학;김문기;국정한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.833-837
    • /
    • 2000
  • The purpose of this study is an evaluation of end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting force, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition. Especially, analysis about tool wear is introduced in this research.

  • PDF

A Study on the High-Speed Machining of Die/Mold Material Using a Spindle-Speeder (주축증속기를 이용한 금형강의 고속절삭에 관한 연구)

  • 이용철;강명창;이득우;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.81-87
    • /
    • 1998
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and molds. In this paper, high-speed machining for HP-4 die material was carried out with a coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show various characteristics in different cutting conditions. Especially, the surface roughness of the workpiece depends largely on pick feed and feed-per-revolution of the ball endmill. In the condition where pick feed and feed-per-revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

Machinability evaluation according to variation of tool shape in high speed machining (고속가공용 엔드밀공구의 형상변화에 의한 성능평가)

  • 강명창;김정석;이득우;김광호;하동근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

Study of Cutting Characteristics in High Speed Synchronized Tapping (고속 동기 탭핑에서의 절삭 특성에 관한 연구)

  • 정용수;이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.304-307
    • /
    • 2002
  • High speed machining was accomplished. through the technological advances which covers the whole field of mechanical industry. But tapping have many troubles because of its complicate cutting mechanism, for example. tool damage, chip elimination and synchronization between spindle rotation and feed motion. But High speed tapping is so important that it marches in step with the flow of the times and make improvement in the productivity. In this paper we analyze mechanism of high speed synchronized tapping with the signal of tapping torque and spindle speed obtained through the newly developed high speed tapping machine(NTT-30B). We made an experiment with this machine on condition of various speed from 1000rpm to 10000rpm. As one complete thread is performed through the whole chamfer cutting, cutting torque increases highly in chamfer cutting, but smoothly in full thread cutting functioning of the threads guide. And the size of cutting torque according to spindle speed(rpm) was not enough of a difference to be conspicuous.

  • PDF

A Study on Optimization of Cutting Conditions Using Machining Characteristics DB in High Speed Machining (가공특성 지식DB를 통한 고속가공에서 최적조건선정에 관한 연구)

  • Won J.Y.;Nam S.H.;Hong W.P.;Lee S.W.;Choi H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.163-168
    • /
    • 2005
  • It is one of the most important things to determinate optimized cutting conditions which satisfy productivity and cost simultaneously in production and CAPP systems. These days many researchers have figured out the optimizing way for solutions of multi-object function to find the approach methods using algorithm such as genetic algorithm or tabu search, etc., instead of mathematical methods. The main creation of objective function is proposed by empirical method but which is difficult to set it up and to analysis. In this paper, an optimization method of cutting condition is shown using the ANN and GA for the multi-objective function in high speed machining.

  • PDF

A Study on the Evaluation on High-speed Machining Characteristics of AL7075 (AL7075의 고속가공특성 평가)

  • 이종현;이동주;이응숙;신보성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.220-224
    • /
    • 2001
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and molds. To perform efficient high-speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force. To measure cutting force in high-speed machining, dynamometer has to have high natural frequency. In this paper, The dynamometer which has high natural frequency used to measure the cutting force in various cutting conditions. High-speed machining characteristics are evaluated by the cutting force, FFT analysis of the cutting force and chip formation.

  • PDF

High Speed Machining of Difficult-to-cut Material using Ball Endmill (볼 엔드밀을 이용한 난삭재의 고속가공 특성)

  • 손창수;강명창;이득우;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.139-142
    • /
    • 1995
  • Inconel 718 is one of the most difficut workpiece for machining, So it is necessary to evaluate the machining characteristics of Inconel 718 In this study, High speed machining of this material was carried out with Tin coated WC ball endmill and TiN coated HSS ball endmill. The cutting force and shape of machined surface and cip type were investigated according to variation of cutting speed,feed rate and depth of cut

  • PDF

Development of Rapid Prototyping System using High Speed Machining of Plastics (합성수지의 고속 절삭을 이용한 쾌속조형 시스템)

  • Jung, Tae-Sung;Choi, In-Hugh;Lee, Dong-Yoon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.5-12
    • /
    • 2003
  • In order to reduce the lead-time and cost, many useful methods have been applied to rapid prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also offers practical advantages in aspects of precision and versatility. However, traditional 3-axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5-axis machining of plastics has been developed to overcome those limitations. And cutting experiments were conducted to determine the design factors of the system and the cutting conditions of plastics. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF

A Study on the Characteristics of High-Speed Small-Diameter Wipe Milling for Al6061 (Al6061 소재의 소구경 고속측면밀링특성에 관한 연구)

  • Park, Hwi-Keun;Lee, Sang-Min;Lee, Choong-Seok;Chae, Seung-Soo;Lee, Won-Seok;Choi, Yun-Seo;Jo, Hyun-Taek;Baek, Young-Jong;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.24-28
    • /
    • 2012
  • In this paper, the high speed milling characteristics of Al6061 was studied. A gantry type milling & tapping center was developed for this study. The cutting force and the resulting surface roughness were measured at various cutting conditions. The experimental results indicate that the surface roughness is relative to the cutting conditions.