• Title/Summary/Keyword: 고속엘리베이터

Search Result 18, Processing Time 0.024 seconds

Dynamic Modeling and Controller Design for Active Control of High-speed Elevator Front-back Vibrations (고속 엘리베이터의 전후 진동제어를 위한 동적 모델링 및 능동 제어기 설계)

  • Baek, Kwang-Hyun;Kim, Ki-Young;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • Front-back vibrations of high-speed elevator need to be suppressed as in the case of lateral vibrations. The dynamic model for the front-back vibrations is different from the lateral vibration model since the supporting structure varies. In this study, a dynamic model was derived using the energy method. Based on the free vibration analysis, it was observed that the fundamental frequency for the front-back vibration is slightly lower than the fundamental frequency of the lateral vibration, which means that the active vibration control should be carried out in both directions. The PPF control algorithm was applied to the numerical model under measured rail irregularities. The numerical results show that the active vibration control of elevator front-back vibration is also possible.

Active Control Experiments on High-speed Elevator Vibrations (고속 엘리베이터 능동진동제어 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.325-332
    • /
    • 2011
  • This paper is concerned with the active control experiments on elevator vibrations by means of the active roller guide. To this end, a roller guide was designed using a voice-coil actuator and linear guide. A simple proportional control algorithm combined with the band-pass filter was implemented using the DSP. Based on the initial experiments, a new control system which can handle lateral and front-back vibrations of elevator was built and tested using the elevator test tower. The experimental results show that the elevator vibrations are reduced by the active control technique.

Speed Control of Permanent Magnet Synchronous Motor for Elevator (엘리베이터구동용 영구자석형 동기전동기의 속도 제어)

  • Won, Chung-Yuen;Yu, Jae-Sung;Kim, Jin-Hong;Jun, Bum-Su;Hwang, Sun-Mo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-82
    • /
    • 2004
  • This paper describes the speed control of the surface-mounted permanent-magent synchronous motors (SMPMSNM) for elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control and Anti-windup technique is adopted to prevent a windup phenomenon. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA(EPF10K10TI144-3) to design compactly and inexpensively. The proposed scheme is verified by the results through digital simulation and experiments for a three-phase 13.3[kW] SMPMSM as a MRL(MachineRoomLess) elevator motor in the laboratory.

Implemention of a DTIF Controller for Robust Drive of a 3 Phase Induction Motor in High-Speed Elevator (고속 엘리베이터에서 3상 유도전동기의 강건한 구동을 위한 DTIF 제어기의 구현)

  • 김동진;강창수;한완옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.88-96
    • /
    • 1995
  • High speed elevator requires precise drive included in zero speed at start/stop drive for the high stability and controllability. The vector control techniques, which have been used for the precise operation of induction motor, can be divided into two classes; The indirect vector control by slip frequency and the direct vector control by field orientation. The existing direct vector control technique has a robustness against the change of motor parameter and the existing indirect vector control technique has a strength of control ability in the wide speed range comparatively. This study presents the DTIF (Direct Torque Indirect Flux) controller which has robust movement in the transition state and in about zero and low speed using the control technique in which torque is controlled by the direct vector technique and flux is controled by indirect vector technique. The proposed system is verified by simulation and experiment for driving 3 phase induction motor. The process of transition which is from about zero speed and low speed to high speed is compared and measured to specification of phase voltage, phase current and DC link current. It is verified that DTIF controller show robust and stable speed variation.

  • PDF

High-Speed Elevator Controlled by Voltage-Type PWM Inverter (전압형 PWM 인버터 제어 고속 엘리베이터 시스템)

  • Kim, Woon-Soo;Jang, Cheol-Ho;Lee, Jea-Pil;Kim, Jung-Ha;Eom, Yong-Gi;Song, Seung-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1206-1210
    • /
    • 1992
  • To satisfy the requirements of a stable speed control, comfortable ride and precise landing in the high-speed elevator. The induction motor driving elevator is controlled by inverter using vector control method which calculates optimum torque to apply to the Induction motor. This paper describes the control system of high-speed elevator that consists of the voltage-type PWM converter with an unity input power factor and sinusoidal input current and the voltage-type PWM inverter with a precise speed control and sinusoidal output current. The test results of actual elevator are presented.

  • PDF

Development of Simulator for High-Speed Elevator System (고속 엘리베이터 시스템용 시뮬레이터 개발)

  • Ryu, Hyeong-Min;Kim, Seong-Jun;Seol, Seung-Gi;Gwon, Tae-Seok;Kim, Gi-Su;Sim, Yeong-Seok;Seok, Gi-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • This Paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system. In order to implement the equivalent inertia of entire elevator system the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to est another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are Presented so hat the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system.

Development of Simulator for High-Speed Elevator System (고속 엘리베이터 시스템용 시뮬레이터 개발)

  • Ryu, Hyung-Min;Kim, Sung-Jun;Sul, Seung-Ki;Kwon, Tae-Seok;Kim, Ki-Su;Shim, Young-Seok;Seok, Ki-Riong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.332-334
    • /
    • 2001
  • This paper presents the simulator system of high-speed elevator system, which can be implemented as 3-mass system as well as equivalent 1-mass system. In order to implement the equivalent inertia of total elevator system, conventional simulator has generally utilized mechanical inertia (flywheel) with large radius, which makes the size and weight of total simulator system large. In addition, the mechanical inertia should be replaced each time in order to test the another elevator system. In this paper, the simulation method using electrical inertia is presented so that the volume and weight of simulator system are greatly reduced and the adjustment of value of the inertia can be achieved easily by software. Experimental results show the feasibility of this simulator system.

  • PDF

Development of High-speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • Ryu Hyung-Min;Kim Sung-Jun;Sul Seung-Ki;Kwon Tae-Seok;Kim Ki-Su;Shim Young-Seok;Seok Ki-Riong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • In this paper, the gearless traction machine drive system using a permanent-maget motor for high-speed elevators is addressed. This application of permanent-magnet motor to the elevator traction machine enables several improvements including higher efficiency, better ride comfort, smaller size and weight, and so on. PWM boost converter is also adopted so that DC-link voltage regulation, hi-directional power flow, and controllable power factor with reduced input current harmonics are possible. To increase reliability and performance, the control board, which can include the car and group controller as well as PWM converter and inverter controller, is designed based on TMS320VC33 DSP The simulator system for high-speed elevators has been developed so that the drive system of high-speed elevator can be tested without my limitation on ride distance and the load condition. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF