• Title/Summary/Keyword: 고무분말

Search Result 84, Processing Time 0.029 seconds

A Study on Recycling Technology of Waste Tire Powder by Particle Size Distribution Analysis (입도분포해석에 의한 폐타이어 분말의 재활용 연구)

  • Hwang, Sung-Hyuk;Jung, Jae-Hum;Pack, So-Yoon;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.128-138
    • /
    • 2003
  • It goes to be serious with environmental pollution because of great number of waste tires scrapped each you. That is why there are lots of studies for efficient recycle. We tried to reduce particle size of the waste tire powder using a new technology of self-designed grinding machine (SDGM) and ultrasonic treatment. The purpose of this study is to improve the physical properties of reduced waste tire powder. We investigated the fine powder by particle size distribution(PSD) analysis. And also we examined the physical and mechanical properties and cross-link density at various particle sire. Also we carried out morphological studies after making the products by SEM.

A Study on Thermoplastic Elastomer Blend Using Waste Rubber Powder(I): Screw Configurations, Morphologies and Mechanical Properties (폐고무 분말을 이용한 TPE 블렌드에 관한 연구(I) : 스크류 조합, 모폴로지, 기계적 물성)

  • Lee, Sung-Hyo;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • For solving the environmental problem of the waste EPDM and for new TPE blend materials, we developed a new kind of TPE material using a co-rotating twin screw extruder. To improve the mechanical properties of TPE material such as tensile strength, elongation at break, and modulus of the blend, PP and waste EPDM powder were blended with different screw configurations. The mechanical properties of the blends and morphology of the TPE were investigated. As the number of kneading disc and left-handed screw element increased, dynamic vulcanization of the material was increased because the shear stress and residence time of blends increased.

  • PDF

Thermal Stability of Glass Powder and Rubber-Filled Phenolic Resins and Dynamic Mechanical Properties of Glass Braid/Phenolic Composites (유리분말 및 고무 충진 페놀수지의 열안정성 및 Glass Braid/페놀수지 복합재료의 동역학적 열특성)

  • Yoon, Sung Bong;Cho, Donghwan;Lee, Geon-Woong
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.14-22
    • /
    • 2007
  • In the present study, the effect of milled glass powder and liquid-type nitrile rubber (NBR) on the thermal stability of phenolic resin and the dynamic mechanical properties of glass braid/phenolic composites has been investigated by means of thermogravimetric analysis and dynamical mechanical analysis. It was found that both milled glass power and NBR filled in the waterborne phenolic resin significantly influenced the thermal stability of phenolic resins and the storage modulus and tan delta of the composites. The presence of glass powder increased the thermal stability of the phenolic resin, whereas the presence of NBR resulted in the weight loss in the specific temperature range. The thermal stability of the phenolic resins without and with the fillers was dependent not only on the cure temperature but also on the cure time. The variation of the storage modulus and tan ${\delta}$ of strip-type glass braid/phenolic composites was also influenced with the introduction of glass powder and NBR to the phenolic matrix as well as by the cure conditions given.

  • PDF

Evaluation of the Effect of PE Wax on Asphalt Binder Properties (PE Wax를 첨가한 아스팔트 바인더의 물리적 특성)

  • Kim, Boo-Il;Jeon, Sung-Il;Lee, Moon-Sup;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.101-113
    • /
    • 2006
  • Generally, asphalt binder modifier increases the viscosity at high temperature as well as at mixing and paving temperature, so that higher temperature is required to produce the hot-mix asphalt. Otherwise, wax is able to improve workability by means of decreasing the viscosity of asphalt binder. In this study, the effect of PE wax used to modify the asphalt binder was evaluated in laboratory. The properties of PE wax modified binder were compared with those of SBS and Crumb Rubber Modified binders. The results showed that wax type I has an effect on strengthening rut resistance as well as improving workability. However, wax type I weaken crack resistance due to making binder harder at intermediate temperature. The results also showed that wax type II has an effect on improving workability and on strengthening crack resistance due to making binder softer.

  • PDF

Friction and Wear Characteristics of Friction Material from Scrap Tire and Potassium Hexatitanate (폐타이어분말과 육티탄산칼륨를 이용한 마찰재의 마찰.마모 특성)

  • Park, Jong-Il;Kang, Dong-Heon;Kang, Suck-Choon;Chung, Chan-Kyo;Chung, Kyung-Ho;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.3-13
    • /
    • 2001
  • To resolve environmental problem of waste tire and asbestos and also to capitalize the wastes, we developed a new kind of friction material using scrap tire, potassium hexatitanate, filler, and friction modifier in which rubber made a continuous phase. The material containing 5, 20, 10, 20phr of potassium hexatitanate, phenol, friction modifier, $BaSO_4$, respectively showed good friction properties, high and stable coefficient or friction, and low wear rate.

  • PDF

Warm Isostatic Pressing of Metal Powder by a Rubber Mould (고무 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Yang, Hun-Cheol;Lee, Ji-Wan;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1831-1841
    • /
    • 2002
  • The effect of a rubber mould on densification and deformation of aluminum alloy powder was investigated during warm isostatic pressing. The hyperelastic constitutive equations based on various strain energy potentials were employed to analyze deformation of rubber. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and volumetric compression of Viton rubber at two warm temperatures. For elastoplastic response, the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to predict compaction responses of metal powder during warm isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder with/without a rubber mould under warm die pressing.

A Finite Element Analysis for Near-net-shape Forming of A16061 Powder under Warm Pressing (온간 성형 하에서 A1 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Jong-Kwang;Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1897-1906
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of A16061 powder was performed under warm rubber isostatic pressing and warm die pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain a part with better density distributions. The shape of rubber mold was designed by determining a cavity shape that provides a desired shape of the final powder compact. To simulate densification and deformed shape of a powder compact during pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy Potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm die pressing and warm isostatic pressing.

Study on the Development of friction Material Using I-glass Fiber Reinforced Composites (유리섬유 강화 복합재료를 이용한 마찰재 개발에 관한 연구)

  • 김영운;최문호;서상하;김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.49-55
    • /
    • 2000
  • This study has been investigated to apply fiber reinforced composites instead of asbestos as a friction material. the reinforced used was E-glass fiber and binder resin was phenol having good mechanical properties and heat resistance. And it has been also investigated the effect of molding conditions and some additives such and carbon black, alumina and rubber powder in E-glass fiber/phenol resin composite on the friction on the friction and wear characteristics. As a result, it was found that the molding conditions of E-glass fiber/phenol resin composites for friction materials had to be different from those of phenol resin and was found that the wear rate of E-glass fiber/phenol resin composites added alumina powder was higher than of composites added carbon black in the same wear distance. And it was found that friction coefficient of E-glass/phenol resin composites added carbon black was decreased and that of the composites added the powder of natural rubber and ABS rubber were increased compared to the composites.

  • PDF

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).

Study on the Flame Retardation and Thermal Resistance for CPE Rubber Material Added Etching By-product of Aluminum (알루미늄 엣칭부산물을 첨가한 CPE 고무재료의 난연성 및 내열성 연구)

  • Kim, Kyung Hwan;Lee, Chang Seop
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.341-350
    • /
    • 2001
  • Aluminum Hydroxide was employed as a thermal retardent and flame retardent for Chloropolyethylene (CPE) rubbery materials which is the construction material of automotive oil cooler hose. and then cure characteristics, physical properties, thermal resistance and flame retardation of compounded rubber were investigated, and optimum mixing conditions of rubber and flame retarding agent were deduced from the experimental results. CPE rubber material which has excellent properties of chemical corrosion resistance and cold resistance and inexpensive in price was used to prepare rubber specimen. The by-product of ething, produced from the process of surface treatment of aluminum was processed to aluminum hydroxide via crushing and purification, which is characterized by XRD, PSA, SEM and ICP-AES techniques in terms of phase, size, distribution, morphology and components of particles and then mixed to CPE rubber materials in the range of 0~80 phr. Hardness, tensile strength, elongation and thermal properties of compounded rubber specimens were tested. The optimum mixing ratio of rubber to additives to give maximum effect on thermal resistance and flame retardation, within the range of tolerable specification for rubber materials, was determined to be 40 phr. The flame retardation of CPE rubber materials was found to be increased by 5 times at this mixing ratio.

  • PDF