• Title/Summary/Keyword: 고랭지 배추재배

Search Result 59, Processing Time 0.043 seconds

Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable croplands (강원도 고랭지대 배추경작지 배추좀나방(Plutella xylostella L.)의 유기인계 및 카바메이트계 살충제에 대한 저항성 발달)

  • Cho, Jun-Mo;Kim, Kyoung-Ju;Kim, Song-Mun;Han, Dae-Sung;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Diamondback moth (Plutella xylostella L.) recently became a single worst insect which is not controlled effectively by organophosphorus and carbamate insecticides in Kangwon alpine croplands. The objective of this study was to determine if diamondback moth has developed a resistance to organophosphorus and carbamate insecticides. Resistance of diamondback moth, collected at Keichon, Jangpyong Taebaek, Chunchon, and Hongchon, was determined by the concentration required to kill fifty percent of population, $LC_{50}$. Their response of resistance varied to insecticides and locations: Taebaek populations were 35 and 70 times more resistant to chlorpyrifos and fenitrothion, respectively, than susceptible(S) population. Hongchon populations were 94 and 254 times more resistant to chlorpyrifos and fenitrothion, respectively, than S population. In addition, Chunchon populations were 37 and 19 times more resistant to profenofos and benfuracarb, respectively, than S population. However, the field populations did not differ in resistance to diazinon, phenthoate, flupyrazofos, carbofuran, and furathiocarb. This study show that field populations of diamondback moth found in Kangwon alpine vegetable croplands have developed a resistance and/or multiple resistance to some insecticides, implying that farmers are losing organophosphorus and carbamate insecticide options for selective control in vegetable crops.

  • PDF

Monitoring of pesticide residues at alpine and sloped-land in Gangwondo, Korea (강원도 고랭지 배추경작지의 토양 및 수질 중 농약 오염 실태)

  • Park, Dong-Sik;Kim, Tae-Han;Kim, Seong-Soo;Lee, Sang-Min;Kim, Song-Mun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.189-197
    • /
    • 2004
  • Alpine and sloped-land in Gangwondo, Korea is the most important land type for cultivation of Chinese cabbage. However, farmers in these regions have major problems with insect pests, weeds and disease. Over use or inappropriate use of agrochemicals occurs frequently. No intensive study of pesticide contamination in this area has been done. The work presented in this paper addresses this deficiency. We measured pesticide residues within soil and water samples using multiresidue analysis. Samples were collected bimonthly from April to October, 2002 at three sites with to sampling spots. At the three sites, Pyeongchang, Jeongseon and Taebaeck, pesticides most frequently detected (>30% of samples) in soil samples were endosulfan, fluazinam, diniconazole, alachlor, prothiofos and dimethomorph. The amount of pesticide residues in the soils was ranged from 0.004 to $0.412\;mg\;kg^{-1}$ in these samples. Non-registered pesticides were also detected in these samples, indicating illegal use of pesticides. No pesticide were detected in the water samples collected from those sites. The results showed that pesticide residues might be dependant on physiochemical properties of pesticides, application history and soil properties. This study provides basic data for appropriate pesticide use on alpine and sloped-land in Korea.

Effect of Quality and Yield for Succeeding Crop Cultivation before Potato Harvest in Semi-highland (준고랭지 감자 수확전 후작물 재배가 품질 및 수량에 미치는 영향)

  • Suh, Jong-Taek;Chang, Dong-Chil;Cho, Ji-Hong;Cho, Kwang-Soo;Park, Young-Eun;Kim, Hyun-Jun;Cho, Hyun Mook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.253-259
    • /
    • 2013
  • This study was conducted to investigate proper mixed cultivation system of potato and succeeding crops (Chinese cabbage and Radish) in 2009. Potato varieties, 'Superior' a middle maturing variety and 'Haryeong' a late maturing variety were used. After potato harvest, succeeding crops of Radish and Chinese cabbage were planted on July 22th in 'Superior' variety plot and Aug. 3rd in 'Haryeong' variety plot. Potato crop was harvested in proper time, after 15, 30, 45 and 60 days. and a suitable potato variety for succeeding crops among 'Superior' and 'Haryeong' was checked. 'Superior' variety was observed to be low rotting, deformity and greening at Chinese cabbage and Radish treatment plot than non-treatment plot. In addition, high yields of potato was maintained in succeeding crop treatments.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Development of Ubiquitous Sensor Network Quality Control Algorithm for Highland Cabbage (고랭지배추 생육을 위한 유비쿼터스 센서 네트워크 품질관리 알고리즘 개발)

  • Cho, Changje;Hwang, Guenbo;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • Weather causes much of the risk of agricultural activity. For efficient farming, we need to use weather information. Modern agriculture has been developed to create high added value through convergence with state-of-the-art Information and Communication Technology (ICT). This study deals with the quality control algorithms of weather monitoring equipment through Ubiquitous Sensor Network (USN) observational equipment for efficient cultivation of cabbage. Accurate weather observations are important. To achieve this goal, the Korea Meteorological Administration, for example, developed various quality control algorithms to determine regularity of the observation. The research data of this study were obtained from five USN stations, which were installed in Anbandegi and Gwinemi from 2015 to 2017. Quality control algorithms were developed for flat line check, temporal outliers check, time series consistency check and spatial outliers check. Finally, the quality control algorithms proposed in this study can also identify potential abnormal observations taking into account the temporal and spatial characteristics of weather data. It is expected to be useful for efficient management of highland cabbage production by providing quality-controlled weather data.

Status of Fertilizer Applications in Farmers' Field for Summer Chinese Cabbage in Highland (고랭지 배추 재배농가의 시비실태 조사연구)

  • Lee, Choon-Soo;Lee, Gye-Jun;Lee, Jeong-Tae;Shin, Kwan-Yong;Ahn, Jae-Hoon;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.306-313
    • /
    • 2002
  • The investigation was conducted to find out amounts and ratios of N, P and K fertilizers applied on summer Chinese cabbage in 58 farmers' fields of highland area. The application levels of N, $P_2O_5$, $K_2O$, livestock manure and lime fertilizers were 444, 188, 390, 9,920 and $2,160kg\;ha^{-1}$, respectively, for summer Chinese cabbage. The ratios of basal dressing were 48% in N, 46.6% in $K_2O$. The frequencies of top dressing both N and K were 1.7 times. The kinds of compound fertilizers were in the order of 11-10-10+3+0.3 > 11-6-6+4+13+17 > 12-9-11+3+0.3 in basal application and 18-0-18+0.3 > 13-0-13+1+0.3 > 18-0-15+0.3 in top dressing. From the surveyed results, we could estimate that total 4,347 tons of N, $P_2O_5$, and $K_2O$ fertilizers were over used for summer Chinese cabbage by farmers in highland.

High Temperature Stress of Summer Chinese Cabbage in Alpine Region (고랭지 여름배추의 고온장해 원인 해석)

  • Hwang, Seon-Woong;Lee, Ju-Young;Hong, Sung-Chang;Park, Yang-Ho;Yun, Seung-Gil;Park, Moon-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.417-422
    • /
    • 2003
  • The objective of this study was to assess the regime of heat shock protein and leaf temperature caused by high temperature stress in chinese cabbage grown in alpine region. In monsoon period, high temperature and heavy rain have caused a stress condition for the cultured higher plants. Chinese cabbages were grown in different altitude, i.e. 600 m and 1,100 m. It was demonstrated that heat shock protein (Hsp 90) in alpine chinese cabbage leaf was actively expressed by high temperature and surplus nitrogen application. As a results of thermo-graphically observed leaf temperatures, chinese cabbage grown in high altitude region were ranged from 20.5 to $24.3^{\circ}C$ while in low altitude from 24.0 to $31.5^{\circ}C$. Furthermore, analysis of assimilated nutrients indicated that total nitrogen content was higher in plant grown under high temperature than under low temperature.

Effect of Application Added Phosphorus and Potassium for Potato and Chinese Cabbage in Mounded Highland Soil (고랭지 성토지에서 감자 및 배추에 대한 인산과 칼리 증시 효과)

  • Lee, Choon-Soo;Lee, Gye-Jun;Shin, Kwan-Yong;Ahn, Jae-Hoon;Lee, Jeong-Tae;Hur, Bong-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.372-380
    • /
    • 2002
  • This study was conducted to investigate the changes of soil properties for potato and Chinese cabbage after application adding phosphorus and potassium fertilizers in the mounded highland soil from 1999 to 2001. Experimental plots were designed with control(NPK+Lime+Compost) and chemical improvement(Control+Application adding P and K). Mounded soil before field experiment of first year(1999) was low in organic matter, available phosphorus and exchangeable potassium, and the soil texture was loamy sand soil. After 3 years, the contents of soil organic matter increased a little, and available phosphorus and exchangeable potassium contents were remarkably increased. The crop growth in chemical improvement plot was better than control plot. Yield of chemical improvement plot in comparison with control plot was increased by 5~22% for potato and 6~25% for Chinese cabbage after 2~3 years.

Evaluation of Factors Related to Productivity and Yield Estimation Based on Growth Characteristics and Growing Degree Days in Highland Kimchi Cabbage (고랭지배추 생산성 관련요인 평가 및 생육량과 생육도일에 의한 수량예측)

  • Kim, Ki-Deog;Suh, Jong-Taek;Lee, Jong-Nam;Yoo, Dong-Lim;Kwon, Min;Hong, Soon-Choon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.911-922
    • /
    • 2015
  • This study was carried out to evaluate growth characteristics of Kimchi cabbage cultivated in various highland areas, and to create a predicting model for the production of highland Kimchi cabbage based on the growth parameters and climatic elements. Regression model for the estimation of head weight was designed with non-destructive measured growth variables (NDGV) such as leaf length (LL), leaf width (LW), head height (HH), head width (HW), and growing degree days (GDD), which was $y=6897.5-3.57{\times}GDD-136{\times}LW+116{\times}PH+155{\times}HH-423{\times}HW+0.28{\times}HH{\times}HW{\times}HW$, ($r^2=0.989$), and was improved by using compensation terms such as the ratio (LW estimated with GDD/measured LW ), leaf growth rate by soil moisture, and relative growth rate of leaf during drought period. In addition, we proposed Excel spreadsheet model for simulation of yield prediction of highland Kimchi cabbage. This Excel spreadsheet was composed four different sheets; growth data sheet measured at famer's field, daily average temperature data sheet for calculating GDD, soil moisture content data sheet for evaluating the soil water effect on leaf growth, and equation sheet for simulating the estimation of production. This Excel spreadsheet model can be practically used for predicting the production of highland Kimchi cabbage, which was calculated by (acreage of cultivation) ${\times}$ (number of plants) ${\times}$ (head weight estimated with growth variables and GDD) ${\times}$ (compensation terms derived relationship of GDD and growth by soil moisture) ${\times}$ (marketable head rate).

Radiation Hormesis on the Growth of Chinese Cabbage and Radish (전리방사선에 의한 배추와 무의 생육촉진효과)

  • Kim, Jae-Sung;Kim, Jin-Kyu;Lee, Eun-Kyung;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.390-393
    • /
    • 1997
  • Hormetic effects of low dose radiation were analyzed in terms of growth stimulation in radish and three cultivars of chinese cabbage. Seeds irradiated with ${\gamma}$ radiation were planted in the green house and in the experimental field. Though it varied with cultivars of tested plants, hormetic effect of low dose ${\gamma}$ radiation on an early stage of growth were shown especially in germination rates and elongation of seedlings. The height of seedlings increased in 0.2 Gy irradiated group of Seolim cultivar and radish, in 1 Gy irradiated group of Konaenggi cultivar and in 4 Gy irradiated group of Ducksung cultivar, respectively, In case of plants grown in the experimental field, prominent were the height increase of radish and Seolim cultivar in 1 Gy irradiated group and the fresh weight increase of both radish and cabbage in 4 Gy irradiated group.

  • PDF