• Title/Summary/Keyword: 고래슬래그미분말

Search Result 2, Processing Time 0.014 seconds

Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 활용한 저강도 콘크리트의 기초적 물성)

  • Kwon, Chil Woo;Lim, Nam Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2013
  • In this study, in order to establish a plan that will enable safe use of renewable resources such as diverse industrial by-products and urban recycled materials, we conducted experiments that focused on flow, bleeding, compressive strength and environmental pollution evaluation to evaluate the material properties of low strength concrete using BFS and SS. In the case of low strength concrete using BFS and SS, blending of at least BFS 6000 within a 30% range regardless of the type of sand used was found to be the most effective approach for improving the workability by securing the minimum unit quantity of water, restraining the bleeding ratio and establishing compressive strength by taking account of the applicability at the work site. In particular, in view of the efficient use of SS, the optimal mixing condition was found to be the mixing of BFS 8000 with in the 30% range, not only for improving the workability restraining the bleeding ratio and establishing the compressive strength but also for application to the work site. Further, the results of tests on hazardous substance content and those of elution tests conducted on soil cement using SS indicated that all values satisfied the environmental standards without any harmful effects on the surrounding environment.

Chloride Penetration of Concrete Mixed with High Volume Fly Ash and Blast Furnace Slag (FA 및 BFS를 다량 혼입한 콘크리트의 염분침투성)

  • Park, Ki-Cheul;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.90-99
    • /
    • 2015
  • This study examined dynamic and characteristics and chloride penetration of concrete mixed with large amount of FA and BFS, which are considered for positive application to construction fields with purpose of long-tern durability of concrete structures. As a result of strength test on FA and BFS, FA concrete showed higher increase of strength compared to OPC, when FA4000 and FA5000 were mixed 30%, respectively. For BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on FA and BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. For relation between compression strength and diffusion coefficient of FA and BFS concrete, as strength increased, diffusion coefficient decreased. In this study, when mixing FA and BFS to concrete for long-run durability and restraint against chloride penetration, for FA, mixing it to concrete with less or equivalent 30% of replacement rate was most efficient. And for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.