• Title/Summary/Keyword: 고도필드

Search Result 16, Processing Time 0.02 seconds

An Efficient Design Strategy of Core Test Wrapper For SOC Testing (SOC 테스트를 위한 효율적인 코어 테스트 Wrapper 설계 기법)

  • Kim, Moon-Joon;Chang, Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.160-169
    • /
    • 2004
  • With an emergence of SOC from developed IC technology, the VLSI design has required the core re-use technique and modular test development. To minimize the cost of testing SOC, an efficient method is required to optimize the test time and area overhead in conjunction for the core test wrapper, which is one of the important elements for SOC test architecture. In this paper, we propose an efficient design strategy of core test wrapper to achieve the minimum cost for SOC testing. The proposed strategy adopted advantages of traditional methods and more developed to be successfully used in practice.

Design of a Smart Safety Measurement System Using Bluetooth Beacon Sensor Nodes (블루투스 비콘 센서 노드를 활용한 스마트 안전 계측 시스템 설계)

  • Park, Young-soo;Park, Chang-jin;Cho, Sun-hee;Park, Kyoung-yong;Kim, Min-sun;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.126-131
    • /
    • 2017
  • This paper designs a smart safety measurement system with Bluetooth beacon sensor nodes that can provide risk detection and evacuation/countermeasure services. The Bluetooth beacon sensor nodes is easily able to be attached to old building wall or construction or civil structure with potential danger. The proposed smart safety measurement system transmits various sensor data such as acceleration, gyroscope, geomagnetic, pressure, altitude, temperature, humidity at the spot where Bluetooth beacon sensor nodes are installed, and we can use them for risk perception, prediction, and warning services. To verify the effectiveness of the proposed system, we performed filed tests which showed that measured displacement values of precast retaining walls were within the permitted displacement value of 38.5 mm.

Enhanced Method for Person Name Retrieval in Academic Information Service (학술정보서비스에서 인명검색 고도화 방법)

  • Han, Hee-Jun;Yae, Yong-Hee;You, Beom-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.490-498
    • /
    • 2010
  • In the web or not, all academic information have the creator which produces that information. The creator can be individual, organization, institution, or country. Most information consist of the title, author and content. The article among academic information is described by title, author, keywords, abstract, publisher, ISSN(International Standard Serial Number) and etc., and the patent information is consisted some metadata such as invention title, applicant, inventors, agents, application number, claim items etc. Most web-based academic information services provide search functions to user by processing and handling these metadata, and the search function using the author field is important. In this paper, we propose an effective indexing management for person name search, and search techniques using boosting factor and near operation based on phrase search to improve precision rate of search result. And we describe person name retrieval result with another expression name, co-authors and persons in same research field. The approach presented in this paper provides accurate data and additional search results to user efficiently.

Study of Robust Position Recognition System of a Mobile Robot Using Multiple Cameras and Absolute Space Coordinates (다중 카메라와 절대 공간 좌표를 활용한 이동 로봇의 강인한 실내 위치 인식 시스템 연구)

  • Mo, Se Hyun;Jeon, Young Pil;Park, Jong Ho;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.655-663
    • /
    • 2017
  • With the development of ICT technology, the indoor utilization of robots is increasing. Research on transportation, cleaning, guidance robots, etc., that can be used now or increase the scope of future use will be advanced. To facilitate the use of mobile robots in indoor spaces, the problem of self-location recognition is an important research area to be addressed. If an unexpected collision occurs during the motion of a mobile robot, the position of the mobile robot deviates from the initially planned navigation path. In this case, the mobile robot needs a robust controller that enables the mobile robot to accurately navigate toward the goal. This research tries to address the issues related to self-location of the mobile robot. A robust position recognition system was implemented; the system estimates the position of the mobile robot using a combination of encoder information of the mobile robot and the absolute space coordinate transformation information obtained from external video sources such as a large number of CCTVs installed in the room. Furthermore, vector field histogram method of the pass traveling algorithm of the mobile robot system was applied, and the results of the research were confirmed after conducting experiments.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).