• Title/Summary/Keyword: 고도보정

Search Result 270, Processing Time 0.031 seconds

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

Topographic Normalization of Satellite Synthetic Aperture Radar(SAR) Imagery (인공위성 레이더(SAR) 영상자료에 있어서 지형효과 저감을 위한 방사보정)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.57-73
    • /
    • 1997
  • This paper is related to the correction of radiometric distortions induced by topographic relief. RADARSAT SAR image data were obtained over the mountainous area near southern part of Seoul. Initially, the SAR data was geometrically corrected and registered to plane rectangular coordinates so that each pixel of the SAR image has known topographic parameters. The topographic parameters (slope and aspect) at each pixel position were calculated from the digital elevation model (DEM) data having a comparable spatial resolution with the SAR data. Local incidence angle between the incoming microwave and the surface normal to terrain slope was selected as a primary geometric factor to analyze and to correct the radiometric distortions. Using digital maps of forest stands, several fields of rather homogeneous forest stands were delineated over the SAR image. Once the effects of local incidence angle on the radar backscatter were defined, the radiometric correction was performed by an empirical fuction that was derived from the relationship between the geometric parameters and mean radar backscatter. The correction effects were examined by ground truth data.

Evaluation of DEM Accuracy from ASTER Data (ASTER 데이터에 의해 추출한 DEM 의 정확도 평가)

  • Na, Sang-Il;Park, Jong-Hwa;Shin, Hyoung-Sub
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2028-2032
    • /
    • 2008
  • DEM은 도시계획, 도로건설 계획, 수해지역 예측 등의 많은 분야에서 다양하게 활용되고 있다. 특히 홍수와 같은 하천재해를 분석, 관리하기 위한 유출모형 적용 때 중요한 입력 자료로 사용되고 있다. 그러나 현재 우리나라에서 사용되는 DEM 제작방법은 과정이 복잡하고 자료 전환이 불가피하며 적용범위에 있어서도 제약이 따른다. 따라서 기존에 사용되던 방법들의 한계를 극복할 수 있는 정확한 DEM 생성 방법으로 위성영상을 이용하는 연구 및 기술개발이 진행되어 왔다. 본 연구에서는 현재 널리 사용되고 있는 DEM 생성 알고리즘을 ASTER 위성 영상에 적용하여 추출한 DEM의 정확도를 평가하고자 하였다. 정확도 평가는 USGS DEM을 사용하였으며, 그 결과 정사보정의 RMSE는 6개의 GCP에서 2 화소에 수렴하였고, 구름영역에서 고도값이 실제 지형보다 높게 나타났다. 또한, 금강 유역의 북동쪽으로 발달된 능선의 고도값은 ASTER DEM이 USGS DEM에 비해 과소평가 되었지만 영상 왼쪽에 위치한 분지는 평활한 지역으로 ASTER DEM과 USGS EM과의 차이가 거의 없는 것으로 나타났다. 또한, 산림 지역 등 능선의 고도값은 ASTER DEM이 USGS DEM에 비해 과소평가 되었지만, 분지 등 평탄 지역의 DEM은 차이가 거의 없는 것으로 나타났다.

  • PDF

성인용 Brassiere의 한ㆍ일 국가별 품질표시 비교 -인터넷 온라인 정보를 중심으로-

  • 전미선;이규혜;박명자
    • Proceedings of the Costume Culture Conference
    • /
    • 2004.04a
    • /
    • pp.97-99
    • /
    • 2004
  • 브래지어(Brassiere)는 유방을 중심으로 흉부를 감싸주는 여성용 파운데이션으로 브라(bra), 업리프트(uplipt), 밴도(bandeau)라고도 한다. 또한 브래지어는 유방을 받쳐주고 보호하며, 가슴의 모양을 교정해서 상의의 이상적인 실루엣을 조성해 주는 구실을 한다. 이러한 브래지어는 청결 보호뿐만 아니라 신체보정의 중요한 역할을 하고 있는 여성의 필수적인 속옷으로 최근 현대인들의 생활양식 변화와 소비수준의 향상으로 신체균형에 대한 인식이 대두되면서 아름다운 체형에 대한 관심과 욕구가 강해지고 이로 인해 보정과 기능성을 겸비한 브래지어에 대한 필요성이 대두되고 있는 실정이다. (중략)

  • PDF

DGNSS 서비스 도입에 관한 연구

  • Gwon, Min-U;Kim, Yeong-Jae;Lee, Byeong-Gon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.286-288
    • /
    • 2014
  • 위성항법중앙사무소에서는 GNSS 체제에 대비하여 위성항법보정시스템 고도화 기반마련을 위해 DGNSS 시범 서비스를 운영 중에 있다. RTCM2.4와 RSIM1.3 발효 시 신속한 DGNSS 전국망 서비스를 위한 위성항법중앙사무소의 현 실태와 준비사항들을 검토하였다.

  • PDF

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

Signal Treatement for Topex/Poseidon Satellite Altimetric Data and Its Application near the Korean Seas (Topex/Poseidon위성 고도계 자료에 대한 신호처리 및 한반도 주변해역에 대한 그 적용)

  • Yoon, Hong-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.12-31
    • /
    • 1999
  • Topex/Poseidon satellite altimetric data are used to estimate characteristics on the oceanic and atmospheric correction factors, and the mean sea level and its variations in the Yellow Sea, the East China Sea and the East Sea from September 1992 through August 1994(70cycles). For the atmospheric correction factors, the variations of dry troposphere, humid troposphere, ionosphere and inverted barometer were very small as a few centimeters, but the variations of electromagnetic bias were higher than other factors. For the oceanic correction factors, the variations of ocean tide(35cm in track 127 and 60cm in track 214) showed high ranges compared to elastic tide(5cm in track 127 and 1cm in track 214) and loading tide(1.8cm in track 127 and 1cm in track 214). It should be understood that the variations of ocean free surface is mainly under the influence of, firstly, ocean tide and, secondly, electromagnetic bias. Mean sea level in the Yellow Sea are higher than in the rest of Seas. Then its range generally comprised between -60cm and 210cm with mean value of about 100cm. Also its variations showed high values in the Yellow Sea and East China Sea, especially 5.689cm in Youngampo. This result is mainly due to the effects of local topography and tidal current.

  • PDF

Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of DEM (DEM 품질에 따른 고해상도 SAR 영상의 지형 보정 정확도 평가)

  • Lee, Kyung Yup;Byun, Young Gi;Kim, Youn Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.519-528
    • /
    • 2012
  • It was pointed out that the terrain distortion of SAR image is even worse than that of optical image although SAR imagery has the advantages of being independent of solar illumination and weather conditions. It is thus necessary to correct terrain distortion in SAR image for various application areas to integrate SAR and optical image information. There has to be a clear evaluation of terrain correction of high resolution SAR image according to the quality of DEM because the DEM of study site is generally used in the process of terrain correction. To achieve this issue, this paper compared the effects of quality of Digital Elevation Model(DEM) in the process of terrain correction of high resolution SAR images, using the DEM produced from 1:5000 topographic contour maps, LiDAR DEM, ASTER GDEM, SRTM DEM. We used TerraSAR-X and Cosmo-SkyMed, as the test data set, which are constructed on the same X-band SAR system as KOMPSAT-5. In order to evaluate quantitatively the correction results, we conducted comparative evaluation with the KOMPSAT-2 ortho image of the same region. The evaluation results showed that the DEM produced from 1:5000 topographic contour maps achieved successful results in the terrain correction of SAR image compared with the other DEM data, and the widely used SRTM DEM data in various applications was not suitable for the terrain correction of high resolution SAR images.

UNCERTAINTIES INVOLVED IN THE IONOSPHERIC CONDUCTIVITY ESTIMATION (전리층 전기전도도의 추정과 관련된 불확실성)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.243-254
    • /
    • 2002
  • Various uncertainties involved in ionospheric conductivity estimation utilizing the electron density profile obtained from the Sondrestrom incoherent scatter radar are examined. First, we compare the conductivity which is based on raw electron density and the one based on corrected electron density that takes into account the effects of the difference between the electron and ion temperatures and the Debye length. The corrected electron density yields higher Pedersen and Hall conductivities than the raw electron density does. Second, the dependence of collision frequency model on the conductivity estimation is examined. Below 110 km conductivity does not depend significantly on collision frequency models. Above 110 km, however, the collision models affect the conductivity estimation. Third, the influence of the electron and ion temperatures on the conductivity estimation is examined. Electron and ion temperatures carrying an error of about 10% do not seem to affect significantly the conductivity estimation. Fourth, also examined is the effect of the choice of the altitude range of integration in calculating the height-integrated conductivity, conductance. It has been demonstrated that the lower and upper boundaries of the integration are quite sensitive to the estimation of the Hall and Pedersen conductances, respectively.

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.