• Title/Summary/Keyword: 고공환경

Search Result 62, Processing Time 0.023 seconds

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.

Development of Thrust Measurement System for Small Turbojet Engine Altitude Test (초소형 터보제트엔진의 고공환경시험용 추력측정시스템 개발)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Bo-Hwa;Song, Jae-Kang;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.379-380
    • /
    • 2009
  • 한국항공우주연구원 추진기관팀은 1999년 10월에 3,000 lbf 급 고공환경 엔진시험 설비를 갖추고 소형 가스터빈 엔진의 고공환경 성능시험에 이를 활용하고 있다. 하지만 새롭게 2008년부터 고공환경 성능시험을 진행하고 있는 엔진은 1,000 lbf 미만의 초소형 엔진으로써 기존 추력측정 시스템을 이용하여서는 정확한 추력의 측정을 보장할 수 없다. 본 논문에서는 초소형 엔진의 고공환경 성능시험 수행을 위한 추력대의 구축 과정을 다루고 있다.

  • PDF

Construction of a High-Altitude Ignition Test Facility for a Small Gas-turbine Combustor (소형 가스터빈 연소기 고공환경 점화 시험 설비 구축 및 검증 실험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Kim, Ki-Woo;Kim, Bo-Yean;Ko, Young-Sung;Kim, Sun-Jin;Kim, Hyung-Mo;Jung, Yong-Wun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • A small high altitude test facility has been developed to investigate ignition performance of a small gas-turbine combustor under high altitude conditions. Supersonic diffusers and a heat exchanger were used to perform a low pressure and a low temperature condition, respectively. Experimental results showed that the low pressure environment could be controlled by upstream pressure of primary nozzle flow and low temperature environment by mixture ratio of cooled air and ambient air. Ignition performance tests were performed to verify the performance of the facility under simulated high altitude conditions. Conclusively, it was proven that the test facility could be used for ignition performance test of a small gas-turbine combustor under high altitude condition of approximately 6,100m.

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

High Altitude Simulation Test Facility for the KSLV-I Kick Motor Development (KSLV-I 킥모터 고공환경모사 시험설비 구축)

  • Kim, Yong-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. Cylindrical supersonic exhaust diffuser, which utilizes the momentum of exhaust gas, provides a simple means for providing a low pressure around the propulsion system. This paper describes sub-systems and specification of high altitude test facility developed for the test of KSLV-I kick motor. Performance of the facility has been successfully verified through five times of hot firing tests.

Study on the Humidity Effect on Gas turbine Engine Performances (습도가 엔진성능에 미치는 영향에 대한 실험적 고찰)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Chun-Taek
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. Also, Gas turbine Simulation Program is used to predict the variation of engine performance due to inlet humidity. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF