• Title/Summary/Keyword: 고고도점화

Search Result 4, Processing Time 0.018 seconds

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

Study of a Pressure Tube for Measuring pressure of a Solid Rocket Motor at High Altitude Environment (고고도환경을 고려한 SRM 압력계측배관에 관한 연구)

  • Lee, Dong-Won;Lee, Won-Bok;Koh, Hyeon-Seok;Kil, Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • When someone measuring for pressure of a Solid Rocket Motor(SRM) at Static Firing Test, generally, used with pressure tube to be filled in Oil. But, if you used pressure tube with oil, you were worried about possibility of spilled oil when you measured pressure in SRM at high altitude environment. Because it usually connected at ignitor. In this paper, We described how to make a pressure tube without oil and matters to be attended to design it.

  • PDF

A Study of Rupture Pressure for Membrane Type Pulse Separation Device of Dual Pulse Rocket Motor (이중펄스 추진기관의 펄스분리장치 파열압력 분석기법 연구)

  • Kim, Seil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.98-106
    • /
    • 2022
  • To develop reliable dual pulse rocket motor, vacuum ignition performance at high altitude and design stability for rupture pressure of the Pulse Separation Device(PSD) are required. In this study, rupture pressure analysis method for the membrane type PSD of the dual pulse rocket motor was developed. The PSD rupture pressure formulation was derived from strain-pressure relationships. The PSD vacuum rupture test apparatus and the PSD 1 second vacuum ignition test apparatus were developed, which can simulate the high altitude vacuum environment. Rupture pressure of PSD was analyzed by conducting the PSD vacuum rupture test, and design values of PSD were derived. Finally, vacuum ignition performance and rupture pressure of the designed PSD were validated with PSD 1 second vacuum ignition test.

Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV (고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션)

  • Kang, Seungwoo;Bae, Choongsik;Lim, Byeungjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • This study conducted a simulation to observe the performance of a multi-turbocharged gasoline internal combustion engine for a high-altitude long-endurance unmanned aerial vehicle (HALE UAV). The WAVE 1-D engine simulation software from Ricardo was used for the engine system modeling and simulation. The specifications of a 2.4-L four cylinder gasoline engine from commercial vehicles and maps of commercial vehicle turbochargers were applied to the multi-stage turbocharged engine system model. Three turbochargers and intercoolers were installed in series for the appropriate intake of pressure for the gasoline engine at a high altitude of 60,000 ft. There was one wastegate for the turbochargers. The operability of the engine system was analyzed via this simulation model.