본 논문에서는 국내에서는 처음으로 이용 고객의 변화를 3년간 추적하여 이용행태를 인지하고 대비하기 위해 적용한 방법으로서, 순고객추천지수(NPS : Net Promoter Score) 실사를 통한 고개의 심층 VOC(Voice of Customer)를 기반으로 분석한 방식이다. KISTI의 해외과학기술자네트워크(KOSEN : The Global Network of Korean Scientists & Engineers)의 서비스에 대한 고객만족도를 기반으로 하여 충성고객을 예측할 수 있는 프레임워크를 구축하는 것이다. 이를 위해 서비스를 경험한 500여명의 의사결정자를 대상으로 해외과학기술자네트워크 서비스에 대한 고객충성도를 분석하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 충성고객을 확보하는데 사전 예측자료로 활용될 수 있다.
본 논문에서는 2015년도 이용 고객의 변화를 3년간 분석하여 이용행태를 모니터링하고 기관의 고객만족 개선 활동에 대한 고객의 의견을 분석하기 위함이다. 한국과학기술정보연구원의 국가과학기술지식정보서비스 (NTIS : National Science & Technology Information Service)는 사업, 과제, 인력, 연구시설 장비, 성과 등 국가연구개발 사업에 대한 정보를 한 곳에서 서비스하는 국가과학기술 지식정보 포털입니다. 부처별(기관별)로 개별 관리되고 있는 국가R&D 사업 관련 정보와 과학기술 정보를 공유하고 공동 활용해, 국가R&D 투자 효율성을 높이고 연구 생산성 향상에 기여하는 것이 주목적입니다. 국가과학기술지식정보서비스에 대한 고객만족도를 기반으로 하여 핵심고객을 예측할 수 있는 프레임워크를 구축하는 것이다. 이를 위해 서비스를 경험한 500여명의 의사결정자를 대상으로 국가과학기술지식정보서비스에 대한 고객충성도를 분석하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 핵심고객을 확보하는데 사전 예측자료로 활용될 수 있다.
기술의 발달에 힘입어 업그레이드된 휴대폰이 매우 활발하게 출시되고 있고, 번호이동성 제도가 도입되면서 휴대폰 교체수요가 급증하고 있다. 이동통신 서비스와 휴대폰 단말기의 상호 보완관계는 매우 크다고 할 수 있는데, 고객들이 고사양의 최신 휴대폰으로 업그레이드 할 경우 다양한 서비스의 이용이 가능하여 인당서비스수익(ARPU)의 증대도 기대할 수 있다. 이와 같이 이동통신 서비스 제공자의 입장에서 자신이 보유하고 있는 서비스 이용행태 자료들을 활용하여 고객들의 신규 단말기 구매시점을 예측할 수 있다면 이는 매우 유용한 전략적 정보가 될 것이다. 즉 교체구매에 대한 소비자의 행동을 이해하여 조기수용자 층을 공략할 수도 있고 단말기 교체시기를 관리하여 서비스 관계를 강화할 수 있다. 본 연구에서는 이동통신 서비스 제공자가 보유하고 있는 고객의 서비스 이용행태 자료만을 활용하여, 휴대폰 사용자가 신제품으로 교체구매를 하는데 소요되는 기간에 영향을 주는 변수들 즉 혁신적 서비스 사용, 부가서비스 사용경험, 통화서비스 사용정도, 로열티 프로그램 참여 등의 효과를 분석하고 휴대폰 교체시기를 예측하는 모형을 개발하여 실증적으로 검증하였다. 변수들의 효과에 대한 가설 검증 결과는 다양한 실무적 시사점을 제공하고 있으며, 모형의 예측타당성도 입증되었다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
기존의 추정된 화물 수요모형은 화물의 출하특성과 관련된 설명변수를 중심으로 추정되었으며, 이에 따라 수송수단 선택 과정에서 화주가 느끼는 실제의 인식 상황을 모형내에 적절히 반영하지 못하였다. 본 연구는 기존 연구가 갖는 한계점을 극복하고자 화주가 수송수단을 선택할 때 느끼는 인식상황을 모형 내에 적용시켜 수단 선택 특성을 분석하였다. 연구대상은 우리나라의 188개 제조업체에서 화물자동차로 출하한 내수용 화물이며, 연구의 범위도 현실 운송체계 내에서 화주의 수단선택 행태를 설명하는 단기간의 예측으로 제한하였다. 모형추정결과 우리나라의 공로화물수송을 해석하기 위해서는, 출하중량까지를 고려한 다항로짓모형 형태이면서 인식 요소를 행태변수로 추가한 모형을 이용하는 것이 가장 적절하다는 결론을 내렸다. 그리고 이에 따라 주요한 설명 변수들의 탄력성과 화주의 인식 요소에 대한 특성값을 분석하여 제시하였다. 연구결과는 활용성 측면에서 직접 활용이 가능한 것과 잠재적인 변화를 예측하는데 이용되는 것으로 구분된다. 먼저 직접활용이 가능한 것은 수송수단과 관계된 변수들을 해석하여 얻는데, 수송비용과 수송시간에 대한 계수값의 크기와 부호, 그리고 탄력성은 정부의 정책부서나 운송인의 계획수립에 직접 적용된다. 다음으로 화주의 인식 요소는 잠재적인 변화를 예측하는데 이용되며 각 요소가 갖는 탄력성 및 특징은 운송인의 고객관리 기준이된다.
Journal of the Korean Data and Information Science Society
/
제20권4호
/
pp.615-627
/
2009
본 연구의 목적은 효과적인 마케팅전략 수립에 도움이 되는 정보를 제공하는 데 있다. 이를 위하여 화장품구매 자료로부터 고객 구매형태와 재구매 간의 관계를 분석하여 고객충성도 예측모형을 개발하였다. 고객충성도는 재구매 가능성으로 측정하였다. 본 연구에서 사용된 자료는 국내의 한 화장품회사 고객들의 2000년부터 2008년까지 9년간의 구매자료 (432,528명, 2,440,107건)이다. 예측모형의 목표변수는 재구매 유무이고, 설명변수는 구매수량, 구매액, 휴면기간 등의 기본변수와 구매횟수와 거래 일자를 이용한 가공변수들이다. 충성도 예측모형은 데이터마이닝 기법인 로지스틱회귀, 의사결정나무 및 신경망모형을 사용하였다. 예측모형평가의 측도로는 하이드게 점수를 사용하였으며, 최대의 하이드게 점수를 가지는 분계점을 선택하였다. 각예측모형에서 선택된 변수는 유사하며, 모형비교 결과 세 모형의 효율과 평가측도의 차이는 크지 않았다. 정분류율이 다소 높고 해석과 활용이 쉬운 의사결정나무모형을 최종모형으로 선택했다.
협업필터링은 상품을 추천하고자 하는 고객과 유사한 구매 행태를 보이는 고객들의 구매 정보를 반영하여 추천대상 고객이 아직 구매하지 않은 상품에 대한 선호도를 예측한 후 선호도가 높을 것으로 예측되는 상품을 추천해주는 시스템이다. 그러나 신규고객의 경우에는 과거 구매 이력의 부재로 선호도를 예측할 수 없어 추천이 어렵게 되는 신규고객 추천문제가 발생하게 된다. 이러한 신규고객 추천문제를 해결하기 위해 기존에 제시되었던 방법들은 추천의 정확도가 낮거나, 추천에 필요한 정보 획득이 어렵거나, 추천 전에 고객이 능동적으로 질의에 응답해야 하는 부담이 있는 등의 문제로 인하여 그 실효성이 매우 낮다. 따라서 기존의 신규고객 추천 방법의 한계를 극복할 수 있는 새로운 접근방법의 필요성이 대두되고 있다. 본 연구에서는 사회네트워크 분석에서 관계 구조적 특성을 분석하기 위해 널리 활용 되고 있는 중심성 개념을 협업필터링에 적용하여 신규고객의 이웃고객을 찾고 그 이웃고객들의 구매정보를 이용하여 신규고객에게 상품을 추천하는 방법을 제시한다. 추천 프로세스는 구매 유사도 분석, 고객 네트워크 구성, 이웃고객 형성, 신규고객 상품추천 단계로 구성된다. 제시한 추천방법의 성능을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 고객 구매 데이터를 사용하여 실험하였다. 실험 결과로부터 제시한 추천방법이 기존의 신규고객 추천방법들과 비교하여 추천의 정확도는 높으면서도, 구매정보 외에 인구통계정보 등과 같은 추가 정보가 필요하지 않으며, 추천 전에 고객이 능동적으로 질의에 응답할 필요가 없는 새로운 방법임을 알 수 있었다.
IT는 도입 비용이 상당히 높고, 단기간에 그 성과가 나타나지 않는다. 하지만 대부분의 IT 도입 성과 평가 모델은 단기간의 성과만을 측정하기 때문에 신뢰성 있는 예측을 하기 힘들다. 또한 성과 측정을 위해 ROI와 같은 재무적인 요소만을 고려하는 경우가 대부분이다. 보다 정확한 성과 측정을 위해서는 재무적 요소뿐 아니라 시스템 활용성, 고객만족, 기업 이미지 등 비재무적인 요소도 고려하여야 한다. 본 연구에서는 장기적인 관점에서 재무적인 요소와 비재무적인 요소 모두를 성과 측정에 반영할 수 있는 방법을 제안한다. 이를 위하여 본 연구에서는 시스템 다이나믹스와 균형성과표(Balanced scorecard)의 연구 성과를 활용하였다. 시스템 다이나믹스는 장기적인 관점에서 대상 시스템의 행태를 분석하는데 유용하며, BSC는 재무적 비재무적 측면에 관한 평가를 가능하게 해 준다. 또한 본 연구의 유용성을 입증하기 위하여, 본 연구 결과를 유통 산업에 있어서 RFID 도입 성과를 측정하는데 적용해 보았다. 적용해 본 결과 RFID는 도입 비용이 많이 들기에 단기적인 관점에서는 부정적인 결과를 가져오나, 장기적인 관점에서는 기업에 이익을 주는 것을 확인할 수 있었다.
최근 독감 예측이나 부동산가격 예측 등 다양한 분야에서 웹검색 트래픽이나 소셜 네트워크 등의 방대한 고객 데이터를 통해 사회 현상, 소비 트렌드 등을 분석하고자 하는 시도가 증가하고 있다. 최근 구글이나 네이버 등의 인터넷 포털서비스 업체들은 온라인 사용자들의 웹검색 트래픽 정보를 구글 트렌드, 네이버 트렌드 등의 서비스로 공개하고 있는데, 이들이 제공하는 웹검색 트래픽 정보를 기반으로 온라인 사용자들의 정보 검색 행태에 대한 연구들이 학계 업계 등에서 주목받고 있다. 웹검색 정보를 기반으로 사회 현상이나, 소비 동향, 정치 투표 결과 등을 예측해 볼 수 있음을 실증하고 있는 분야는 많은 연구가 수행되고 있지만, 웹검색 트래픽 정보를 이용하여, 소비자의 제품에 대한 중요한 속성 도출 및 소비자의 기대 변화 관측 등의 온라인 사용자 행태에 초점을 맞추어 연구되고 있는 분야는 상대적으로 많은 연구가 수행되고 있지는 않다. 따라서, 본 연구에서는 구글이나 네이버가 제공하는 소비자의 웹검색 트래픽을 활용해서 소비자가 생각하는 제품 포지션을 가시화할 수 있는 방법을 제안한다. 브랜드 간의 관계를 확인하기 위해, 동시 검색 트래픽 정보를 활용하여 네트워크 모델링의 방법을 사용한 시스템을 제안하고 있으며, 이를 통해 소비자들이 제품 간의 유사성을 어떻게 인지하고 형성하며, 새로운 혁신 제품 카테고리 내에서 제품 브랜드들이 소비자의 마음 속에서 어떻게 자리 잡고 있는지의 브랜드 포지셔닝을 확인할 수 있는 방법론을 제안하였다. 또한 이를 태블릿 PC의 사례를 통해서, 미시적인 관점에서 소비자의 마음속에 위치한 태블릿 PC 개별 브랜드들의 위치 및 관계를 보여주었다. 기업은 소비자의 제품에 대한 인식 및 중요 속성 도출을 위해 많은 비용과 시간을 소요하여 소비자 조사를 행하게 되는데, 본 연구의 방법론을 활용하여 소비자의 제품에 대한 인식, 제품간 유사도, 제품에 대한 중요 속성의 변화 등을 일반에게 공개된 검색 트래픽 정보를 활용하여 비교적 쉽고 추가적인 비용 없이 도출할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.