• Title/Summary/Keyword: 고객 빅데이터

Search Result 192, Processing Time 0.027 seconds

Design of customized product recommendation model on correlation analysis when using electronic commerce (전자상거래 이용시 연관성 분석을 통한 맞춤형 상품추천 모델 설계)

  • Yang, MingFei;Park, Kiyong;Choi, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.203-216
    • /
    • 2022
  • In the recent business environment, purchase patterns are changing around the influence of COVID-19 and the online market. This study analyzed cluster and correlation analysis based on purchase and product information. The cluster analysis of new methods was attempted by creating customer, product, and cross-bonding clusters. The cross-bonding cluster analysis was performed based on the results of each cluster analysis. As a result of the correlation analysis, it was analyzed that more association rules were derived from a cross-bonding cluster, and the overlap rate was less. The cross-bonding cluster was found to be highly efficient. The cross-bonding cluster is the most suitable model for recommending products according to customer needs. The cross-bonding cluster model can save time and provide useful information to consumers. It is expected to bring positive effects such as increasing sales for the company.

Analysis of Genie Music's Strategy for Strengthening Customer Interactive : Focus on SWOT and TOWS Analysis (고객 인터렉티브 강화를 위한 지니뮤직의 전략 도입과 현황분석 : SWOT과 TOWS 분석을 중심으로)

  • Kwon, Boa;Park, Sang-hyeon
    • Journal of Venture Innovation
    • /
    • v.4 no.1
    • /
    • pp.87-99
    • /
    • 2021
  • The importance of "personalization technology" has recently been highlighted due to the Covid-19 and the development of IT technology such as AI and big data, which is soon coming beyond personalization into the "super-personalization era." Therefore, in terms of the music streaming service market, it has formed a service supply trend in which individual tastes are respected and companies are seeking to establish a realistic analysis and development direction considering the external market environment. From this perspective, this paper sought to analyze the strengths and weaknesses of the Genie Music's and provide a direction for development based on Genie Music's customer interactive strategy. In particular, it was intended to analyze the advantages and disadvantages of customer interactive strategies with the 'live music service platform' that moves with customers and to provide directions for future corporate development. As an analysis method, we looked at strengths and weaknesses, opportunities and threat requirements based on SWOT analysis. Afterwards, the company attempted to present specific corporate development strategies through TOWS analysis.

A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing (효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구)

  • Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.257-264
    • /
    • 2014
  • This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Suggestions for Nurturing Ecosystem to Spur Artificial Intelligence Industry (인공지능 산업활성화 생태계 조성을 위한 제언)

  • Lee, J.Y.;Cho, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.2
    • /
    • pp.51-62
    • /
    • 2016
  • 인공지능(Artificial Intelligence: AI)이 사물인터넷, 빅데이터, 엄청나게 빠른 컴퓨팅 파워와 결합하고 있다. 이에 따라 인공지능이 인간과 같은 수준의 인지능력을 갖추게 되어 가까운 장래에 개인비서 기능뿐만 아니라 기업의 의사결정이나 고객관리를 비롯한 모든 비즈니스 부문에서 큰 역할을 할 것으로 기대된다. 해외의 주요 기술업체들은 AI를 핵심 R&D 분야로 삼고 각기 Application Programming Interface(APIs) 및 클라우드 서비스를 통한 인공지능 기술의 대중화에 힘쓰고 있으며, 개발자들은 이들 도구를 각자의 애플리케이션에 통합함으로써 수익기회를 창출하고 있다. 국내에서도 대기업 및 공공 R&D를 중심으로 인공지능 기술개발이 추진되고 있으나 관련 시장참여자 전체를 견인할 수 있는 기본 생태계 조성을 위한 정부의 지원이 필요한 상황이다. 본 연구는 인공지능 시장동향과 IBM 인공지능 생태계에 대해 개관하였으며, AI 산업체 의견을 반영한 국내 인공지능 산업 활성화 생태계 조성을 위한 제언으로 AI 플랫폼 지원, 인력문제 해결 그리고 공유의 장 마련이 필요하다는 점을 제시하였다.

  • PDF

Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea (방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형)

  • Hong, Taeho
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.187-201
    • /
    • 2022
  • Online reviews written by tourists provide important information for the management and operation of the tourism industry. The star rating of online reviews is a simple quantitative evaluation of a product or service, but it is difficult to reflect the sincere attitude of tourists. There is also an issue; the star rating and review content are not matched. In this study, a star rating prediction model based on online review content was proposed to solve the discrepancy problem. We compared the differences in star ratings and sentiment by continent through sentiment analysis on tourist attractions and hotels written by foreign tourists who visited Korea. Variables were selected through TF-IDF vectorization and sentiment analysis results. Logit, artificial neural network, and SVM(Support Vector Machine) were used for the classification model, and artificial neural network and SVR(Support Vector regression) were applied for the rating prediction model. The online review rating prediction model proposed in this study could solve inconsistency problems and also could be applied even if when there is no star rating.

The Impact of O4O Selection Attributes on Customer Satisfaction and Loyalty: Focusing on the Case of Fresh Hema in China (O4O 선택속성이 고객만족도 및 고객충성도에 미치는 영향: 중국 허마셴셩 사례를 중심으로)

  • Cui, Chengguo;Yang, Sung-Byung
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2020
  • Recently, as the online market has matured, it is facing many problems to prevent the growth. The most common problem is the homogenization of online products, which fails to increase the number of customers any more. Moreover, although the portion of the online market has increased significantly, it now becomes essential to expand offline for further development. In response, many online firms have recently sought to expand their businesses and marketing channels by securing offline spaces that can complement the limitations of online platforms, on top of their existing advantages of online channels. Based on their competitive advantage in terms of analyzing large volumes of customer data utilizing information technologies (e.g., big data and artificial intelligence), they are reinforcing their offline influence as well through this online for offline (O4O) business model. On the other hand, most of the existing research has primarily focused on online to offline (O2O) business model, and there is still a lack of research on O4O business models, which have been actively attempted in various industrial fields in recent years. Since a few of O4O-related studies have been conducted only in an experience marketing setting following a case study method, it is critical to conduct an empirical study on O4O selection attributes and their impact on customer satisfaction and loyalty. Therefore, focusing on China's representative O4O business model, 'Fresh Hema,' this study attempts to identify some key selection attributes specialized for O4O services from the customers' viewpoint and examine the impact of these attributes on customer satisfaction and loyalty. The results of the structural equation modeling (SEM) with 300 O4O (Fresh Hema) experienced customers, reveal that, out of seven O4O selection attributes, four (mobile app quality, mobile payment, product quality, and store facilities) have an impact on customer satisfaction, which also leads to customer loyalty (reuse intention, recommendation intention, and brand attachment). This study would help managers in an O4O area well adapt to rapidly changing customer needs and provide them with some guidelines for enhancing both customer satisfaction and loyalty by allocating more resources to more significant selection attributes, rather than less significant ones.

A CF-based Health Functional Recommender System using Extended User Similarity Measure (확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템)

  • Sein Hong;Euiju Jeong;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • With the recent rapid development of ICT(Information and Communication Technology) and the popularization of digital devices, the size of the online market continues to grow. As a result, we live in a flood of information. Thus, customers are facing information overload problems that require a lot of time and money to select products. Therefore, a personalized recommender system has become an essential methodology to address such issues. Collaborative Filtering(CF) is the most widely used recommender system. Traditional recommender systems mainly utilize quantitative data such as rating values, resulting in poor recommendation accuracy. Quantitative data cannot fully reflect the user's preference. To solve such a problem, studies that reflect qualitative data, such as review contents, are being actively conducted these days. To quantify user review contents, text mining was used in this study. The general CF consists of the following three steps: user-item matrix generation, Top-N neighborhood group search, and Top-K recommendation list generation. In this study, we propose a recommendation algorithm that applies an extended similarity measure, which utilize quantified review contents in addition to user rating values. After calculating review similarity by applying TF-IDF, Word2Vec, and Doc2Vec techniques to review content, extended similarity is created by combining user rating similarity and quantified review contents. To verify this, we used user ratings and review data from the e-commerce site Amazon's "Health and Personal Care". The proposed recommendation model using extended similarity measure showed superior performance to the traditional recommendation model using only user rating value-based similarity measure. In addition, among the various text mining techniques, the similarity obtained using the TF-IDF technique showed the best performance when used in the neighbor group search and recommendation list generation step.

Design and Implementation of Mobile CRM Utilizing Big Data Analysis Techniques (빅데이터 분석 기법을 활용한 모바일 CRM 설계 및 구현)

  • Kim, Young-Il;Yang, Seung-Su;Lee, Sang-Soon;Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.289-294
    • /
    • 2014
  • In the recent enterprises and are utilizing the CRM using data mining techniques and new marketing plan. However, data mining techniques are necessary expertise, general public access is difficult, it will be subject to constraints of time and space. in this paper, in order to solve this problem, we have proposed a Mobile CRM applying the data mining method. Thus, to analyze the structure of an existing CRM system, and defines the data flow and format. Also, define the process of the system, was designed sales trend analysis algorithm and customer sales recommendation algorithm using data mining techniques. Evaluation of the proposed system, through the test scenario to ensure proper operation, it was carried out the comparison and verification with the existing system. Results of the test, the value of existing programs and data matches to verify the reliability and use queries the proposed statistical tables to reduce the analysis time of data, it was verified rapidity.

An Exploratory Study on Key Attributes of Specialty Coffee by Online Big Data Analysis (온라인 빅 데이터 분석을 활용한 스페셜티 커피 속성에 대한 탐색적 연구)

  • Lim, Miri;Wun, Daiyeol;Ryu, Gihwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.275-282
    • /
    • 2020
  • Social interest on high-quality specialty coffee is increased due to customers' growing experience upon coffee and recent change of coffee culture, which is taking one step further from putting emphasis on not just price and quality but also psychological satisfaction. As a culture of drinking coffee and giving much value on its taste and flavor, a number of customers increasingly demand coffee which is probable to suit one's taste. Likewise, the number of specialty coffee shops is increasing with growing qualities of their coffee. Therefore, the purpose of this study is to analyze the main attributes of specialty coffee and to build a marketing system for specialty coffee shops. The text mining on domestic web portal sites by online big-data analysis is used to extract components of properties of specialty coffee and analyze the degree of how the elements affect the properties. According to the result of the study, words related to coffee taste, coffee beans and baristas were found to play a central role in the properties of specialty coffee.