본 논문에서는 협력적 여과방식에서 고객의 특정 상품에 대한 선호도 예측의 정확도를 향상하기 위해 상품의 선호도 값에 가중치를 반영하는 전처리 방법을 제안한다. 이를 위해 고객별 상품의 선호도 값에 정보검색 분야에서 사용되고 있는 벡터 공간 모델을 이용하여 가중치를 부여하며, 이를 통하여 특정 상품을 선호하는 고객과 전체 상품을 고루 선호하는 고객간의 차별화 값을 반영하여 보다 정확한 선호도를 예측할 수 있게 된다. 전처리 과정을 수행하지 않은 기존의 협력적 여과 방식과의 실험을 통한 비교 분석을 통하여 본 논문이 제안하는 전처리 과정의 타당성과 비교우위를 검증한다.
웹 기반의 쇼핑몰 사이트의 수가 많아지고 그 이용량이 증가하면서, 차별화된 고객 서비스를 위해 다양한 데이터마이닝 기술들이 적용되고 있다. 특히 고객의 취향에 부합하며 그의 필요를 만족하는 상품을 고객에게 제안하는 추천 시스템을 위해 정보 필터링(information filtering) 알고리즘들이 사용되고 있다. 많은 추천 시스템들은 고객들이 상품에 대해 부여한 선호도 정보를 기반으로, 현재 사용중인 고객에게 그와 취향이 비슷한 고객들이 선택했으며, 아직 그가 선택한 적이 없는 상품을 추천하는 협력적 필터링(collaborative filtering) 방법을 사용하고 있다. 본 연구에서는 보통의 협력적 필터링 방법에 내용기반 필터링(content-based filtering) 방법을 적용하고, 고객의 상품에 대한 선호도 점수를 자동으로 계산할 수 있도록 하는 방법을 제안하여 적용함으로써 협력적 필터링 방법을 개선하였다.
협력적 필터링을 이용한 추천시스템은 인터넷 기반 전자상거래에서 좋은 추천 도구로 사용되고 있다. 협력적 필터링 방식은 고객의 선호도를 조사하여 이를 바탕으로 이웃 고객을 선정하고 이들에 대한 선호도를 수집하여 고객이 좋아할 만한 상품을 추천하는 기법이다. 이웃 고객에 대한 정보를 이용하여 추천에 사용하므로 이웃고객이 적은 경우 추천시스템의 예측에 어려움이 생긴다. 본 논문은 추천시스템의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 상품을 우선 선정하고 그들 상품에 대한 선호도를 조사하였다. 그리고 이들에 대한 선호를 나타낸 고객들을 선별하여 추천시스템의 예측 정확도를 향상시키는 방법을 제안한다.
이웃기반 협력 필터링을 이용한 추천시스템은 적은 평가 자료로 인해 추천 성능에 문제가 생긴다. 이는 다른 고객의 정보도 추천에 사용하는 협력 필터링에서 이웃고객 선정에 문제가 생겨 추천시스템의 신뢰가 떨어진다. 본 논문은 추천시스템의 신뢰를 높이기 위한 방법으로 선호도 평가치가 적은 상품을 임계값을 이용하여 선별하고 이에 따라 고객의 표준편차를 조사하였다. 그리고 표준편차가 낮은 고객에 대한 MAE를 분석하여 예측의 정확도가 높아짐을 알 수 있었다.
대기업과 중소기업 간의 상호 협력을 통해 동반성장을 하는 상생협력이 국내 경제에 긍정적인 영향을 미치고 있다. 또한 대부분의 대기업들이 상생협력 전담팀을 구성하거나, 그룹차원의 상생협력을 주도하고 있다. 포스코는 국내 최초로 그룹차원의 중소기업 상생협력협의체를 구성하고, 지속적이고 체계적인 상생협력을 추진할 것이라고 한다. 공급사, 외주파트너사, 고객사의 목소리를 경청해 원할한 소통과 신뢰를 바탕으로 함께 성장하는 상생협력의 롤모델 역할을 할 것이다.
협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.
본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.
오늘날 기업환경은 고객의 요구에 대응하여 적시에 효율적으로 상품과 서비스를 공급하고 전체비용의 대부분을 차지하는 물류와 재고비용을 줄여 기업의 이윤을 극대화하는 것으로 변화하고 있다. 예전에 기업위주의 시장형성에서 고객위주로 시장이 변화하고 있는 것이다. 이에 따라 기업은 고객의 요구에 능동적으로 대응하기 위하여 리드타임의 단축이 필수적인 요소가 되어가고 있다. 이러한 기업환경에 변화에 따른 대안으로 나온 것이 실시간 제조와 공급사슬망관리(Supply Chain Management : SCM)이다. 본 연구는 실시간 제조를 지원하기 위하여 제조업체와 협력사간의 물류에 있어 Goldratt의 Drunm-Buffer-Rope 스케줄링을 이용하여 물류창고라는 Buffer를 두어 협력사중 재고의 부족현상이 일어날 경우에는 공급체인상의 능력제약자원(Capacity Constraint Resource: CCR)을 찾아 능력제약자원이 되는 협력사에 대하여 생산을 독촉하고 물류창고에서는 부족재고에 대한 불출을 개시하여 재고의 완충을 도모하고자 한다. 제조업체와 협력사간의 정보를 실시간 감시시스템(Real-Time Monitoring System : RTMS)를 응용하여 웹상에서 공유하며, 실시간 거래가 가능토록하는 공급사슬망 구축에 관한 연구와 이를 프로그램 구현을 통해 실제적으로 시험해 보고자 한다.
온라인 및 오프라인 상에서 추천시스템에 대한 요구가 커지고 있으며 이에 관련해 않은 연구가 이루어지고 있다. 추천시스템은 마케팅 활용의 관점에서 목표 상품에 대한 반응 가능성이 높은 고객군을 추천하는 타겟마케팅 추천시스템과 고객 개인별로 구매 가능성이 높은 상품을 추천하는 개인화 추천시스템으로 구분할 수 있다. 지금까지의 추천시스템에 관한 연구는 대부분 개인화 추천시스템의 효율 향상에 목표를 두고 있다. 그러나 기업의 타겟마케팅에 대한 요구를 적절히 지원하지 못하고 있어 타겟마케팅에 대한 연구가 필요하다. 본 연구에서는 상품별 구매 패턴을 이용하는 프로파일 기반 추천 방법을 제안하고 이 방법과 기존의 협력적 추천 방법을 결합하여 특정 상품에 반응 가능성이 높은 고객을 추천하는 방법을 제안한다. 프로파일 기반 추천에서는 카이스퀘어 검정을 사용하여 상품별로 구매 패턴에 영향을 미치는 요인을 추출하고 이를 이용하여 특징 고객군을 선별하여 전체 고객군과 특징 고객과의 엔트로피(Entropy)의 변이 정도를 예측값으로 사용한다. 실험결과, 프로파일 기반 추천과 협력적 추천을 결합하여 추천하는 방법은 한 가지 방법을 사용할 때 보다 좋은 추천 정확도를 나타내었다.
Journal of the Korean Data and Information Science Society
/
제20권5호
/
pp.809-818
/
2009
협력적 필터링 기법은 전자상거래에서 거래되는 아이템에 대하여 고객들이 평가한 선호 정보를 이용하여 특정 상품에 대한 선호도 예측 대상 고객의 선호도를 예측하는 기법이다. 협력적 필터링 기법을 통한 예측 정확도를 향상시키기 위해서는 예측에 이용할 수 있는 고객들의 선호 정보를 충분히 확보하여야 한다. 그러나 과도한 이웃 고객의 선호 정보는 오히려 예측 정확도에 부정적 영향을 미치며 또한 과소 정보 역시 예측 정확도 감소에 영향을 미칠 수 있다. 본 연구에서는 협력적 필터링 알고리즘 적용에 있어 k명의 근접 이웃을 결정하는 이웃 선정방법을 개선하였으며 개별 고객의 선호도 평가 정보를 이용하여 적정 이웃 수를 결정할 수 있는 방법을 제시한다. 본 연구의 결과는 근접 이웃 수 결정을 위한 기존 방법인 탐색적 방법을 개선함과 동시에 선호도 예측 정확도를 향상시키는데 유용한 방법을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.