• Title/Summary/Keyword: 고강도 철근콘크리트 보

Search Result 158, Processing Time 0.022 seconds

Shear Strength of High Strength Reinforced Concrete Beams (고강도(高強度) 철근(鐵筋) 콘크리트 보의 전단강도(剪斷強度)에 관한 연구(硏究))

  • Ko, Kwang Il;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.63-71
    • /
    • 1989
  • Four series of reinforced concrete beams were tested to determine their shear cracking strengths and ultimate shear capacities. All beams were singly reinforced without shear reinforcement. The concrete strength was the prime variable which was varied from 247 to $708kg/cm^2$(8500 to 10000 psi). Within each series the shear span-to-depth ratio was varied from 2 to 5, while concrete strength was held constant. Test results indicate that the effect of concrete strength on shear capacities is varied as the shear span-to-depth ratio is changed. Furthermore, the current shear design provisions do not provide a consistency with respect to estimating shear capacities of reinforced concrete beams. By introducing the shear failure mode index, a new equation is proposed to predict ultimate shear strengths of reinforced concrete beams without web reinforcement.

  • PDF

Shear Behavior of R.C. Beams according to Increase of Concrete Compressive Strength (철근콘크리트 보의 고강도화에 따른 전단거동에 관한 연구)

  • 윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.190-198
    • /
    • 1994
  • Th~s paper presents the shear behavior in reinforced normal, medium and high strength con crete beams due to the Increase of concrete compressive strength. Twelve shear tests were con ducted on full scale beam speclrnerls havmg concrete compressive stlengths of 360, 670 and 873kg/$cm^2$. Different amounts of shear reinforcement as a variable were investigated according to ACI 318 89. The shear responses are discussed in terms of the shear capacity. the ductility and the reserved strength. The prediction and comparison with the test results are also presented.

Flexural Design and Ductile Capacity of Reinforced High Strength Concrete Beams (고강도 철근 콘크리트 보의 휨 설계 및 연성능력)

  • 신성우;유석형;안종문;이광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.141-149
    • /
    • 1996
  • The reinforced high-strength-concrete beam subjected to flexure moment behaves more brittly than the moderate-strength-concrete beam reinforced with equal reinforcement ratio($\rho$/$\rho_b$). Test results show that when the concrete strength exceeds 830kg/$cm^2$, the maximum reinforcement ratio should be less than $0.6{\rho}_b$ for ductile behavior (${\rho}_b$=balanced steel ratio). The ratio of flexural strength between experimental results and analytical results with rectangular stress block decrease as the compressive strength of concrete increase. The shape of the compressive stress block distributed triangularly. because the ascending part of the stress-strain curve shows fairly linear response up to maximum stress in contrast to the nonlinear behavior of the medium and low strength specimens.

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

The Effect of Shear Span-to-Effective Depth Ratio of Reinforced high Strength Concrete Deep Beam (고강도 철근콘크리트 춤이 큰 보의 전단스팬비 효과)

  • 오정근;성열영;안종문;이광수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.225-231
    • /
    • 1997
  • 콘크리트 압축강도 및 전단스팬비의 변화에 의한 고강도 철근콘크리트 춤이 큰 보의 전단거동 및 내력특성을 파악하기 위한 실험적 연구를 하였다. 춤이 큰 보는 하중작용점과 하중지지점을 연결하는 사균열의 확대에 의해 취성전단파괴양상을 나타내었으며 하중작용점 하중 지지점의 콘크리트 압괴를동반하는 전단압축 및 전단인장파괴 형태로 최종파괴되었다. 전단스팬비가 감소함에 따라 사균열전단응력 및 최대전단응력은 크게 증가하였으며, ACI 및 CIRIA규준식은 부재의 최대전단응력을 비교적 정확하게 예측하고 있음을 파악하였다.

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

Evaluation of the Maximum Yield Strength of Steel Stirrups and Shear Behavior of RC Beams (철근콘크리트 보의 전단보강철근의 최대 항복강도 및 전단거동 평가)

  • Lee, Jung-Yoon;Choi, Im-Jun;Kang, Ji-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.711-718
    • /
    • 2010
  • The requirement of the maximum yield strength of shear reinforcement in the KCI-07 code is quite different to those in the ACI-08 code, EC2-02, CSA-04, and JSCE-04 codes. Eighteen RC beams having high strength shear reinforcement were tested. Test results indicated that even if the yield strength of shear reinforcement in beams was much greater than the maximum yield strength required by the KCI-07 design code, the shear reinforcement of these beams reached their yield strains. Furthermore, the shear strengths of tested beams increased almost linearly with the increase of the amount of shear reinforcement. In addition, larger numbers of diagonal cracks developed in the web of the beam having greater yield strength than the beams having lower yield strength of shear reinforcement. The maximum crack width of the beam having high strength shear reinforcement was approximately the same to the crack with of the beam having normal strength shear reinforcement.

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

Evaluation of Bond Behavior of Reinforced Concrete Beams with High-Strength Transverse Reinforcement (고강도 횡보강근을 사용한 철근콘크리트 보의 부착 거동 평가)

  • Kim, Sang-Woo;Kim, Young-Sik;Baek, Seung-Cheol;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.102-109
    • /
    • 2010
  • This paper investigates the bond behavior of reinforced concrete beams having high-strength transverse reinforcement. A total of four reinforced concrete beams were tested in this study to estimate the bond capacity of the proposed U-shape reinforcement. The proposed U-shape reinforcement not only has a simple structure to install, but also can increase the bond capacity of reinforced concrete beams by controling bond cracks. This study follow the test method proposed by Ichinose to obtain the bond stress and the bond slip of the specimens. The main test parameters were the yield strength, ratio, and reinforcing types of transverse reinforcements. It was found that the proposed U-shape reinforcement was able to effectively improve the bond performance of reinforced concrete beams with high-strength transverse reinforcement.

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.