• Title/Summary/Keyword: 고강도 인바합금

Search Result 6, Processing Time 0.021 seconds

Effect of Heat-treatment in Low Thermal Expansion Coefficient Fe-Ni-Co alloy for Core Material of Increased Capacity Transmission Line (증용량 송전선 강심용 저열팽창 Fe-Ni-Co 합금에 있어서 용체화처리 영향)

  • 김봉서;유경재;김병걸;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.950-952
    • /
    • 2000
  • Considering the effective distribution coefficient of Ni in Fe-Ni-Co invar alloy containing a little amount of carbon, we investigated on the thermal expansion coefficient(${\alpha}$). Fe-Ni-Co invar alloy had a large thermal expansion coefficient in as-casted compared with solution treated. The thermal expansion coefficient of Fe-Ni-Co alloy increased with the carbon content in both state of as-casted and solution treated. The effective distribution coefficient(Ke$\^$Ni/) of Ni was smaller than unity in alloy of not containing carbon, but is way larger than unity in alloy of containing carbon. It was considered that the homogeneity of Ni in primary austenite affected thermal expansion coefficient.

  • PDF

Study on Precipitation and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동과 기계적 특성 연구)

  • Jeong, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.507-510
    • /
    • 2008
  • Effect of V addition on the precipitation behavior and strength of Fe-36Ni based high strength Invar alloy for power transmission wire was investigated. Fe-36Ni Invar alloy plates were fabricated using conventional ingot casting followed by hot rolling. High strength can be obtained through precipitation hardening and strain hardening by cold rolling. Simulation using FactSage$^{(R)}$ revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, $Mo_{2}C$ and $M_{23}C_6$ carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature of $800^{\circ}C$.

Effects of Carbon Addition in High Strength Invar Alloy for Transmission Line (증용량 송전선 강심용 고강도 인바합금에 있어서 탄소 첨가의 영향)

  • Kim, Bong-Seo;Yoo, Hyung-Jae;Lee, Hee-Woong;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1599-1601
    • /
    • 2000
  • To study invar alloy as a core material for large ampacity over-head transmission line which have high strength and low thermal expansion coefficient simultaneously, thermal expansion coefficient, physical properties and hardness of Fe-Ni-Co-xC alloy have been studied. It is necessary that invar alloy possess low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper we tried to find out the effect of carbon addition related with mechanical and physical properties. It was found that the thermal expansion coefficient and hardness were increased with carbon addition for whole composition range but the saturation magnetization was decreased except for the range of 0.1$\sim$0.4%C.

  • PDF

Precipitation Behavior and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동 및 기계적 특성)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.547-550
    • /
    • 2008
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through precipitation hardening and strain hardening by cold working. $FactSage{(R)}$ in this study, revealing that equilibrium phases which can be formed are two kind of MC-type precipitates and MoC carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature $770^{\circ}C$. High strength above 1000MPa and 40% of elongation were obtained at room temperature in both cases.

  • PDF

Effect Of The Microstructure And Aging Treatment Conditions On Strength Of High Strength Invar Alloy (고강도 인바합금의 강도에 미치는 미세구조와 시효처리 조건의 영향)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.322-325
    • /
    • 2007
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through solution hardening, precipitation hardening and strain hardening by cold working. In the present study, ingots of Fe-36Ni based Invar alloys with the contents of C, Mo and V varied. Microstructure observations by OM, SEM, and TEM were carried out to validate the simulation results. BCC phase and $FeNi_3$ phase are also expected at lower temperatures below $500^{\circ}C$. Aging treatments were carried out at temperatures ranging from 400 to $900^{\circ}C$ for time intervals from 3 min to 100hrs. Peak aging condition was obtained as $400^{\circ}C$ and 1 hr. With temperature increased, peak strength was decreased abruptly. Microstructure observation was conducted by optical microscopy, scanning electron microscopy, and transmission electron microscopy.

  • PDF

Effects of Co Addition in High Strength and Low Thermal Expansion Invar Alloy (고강도 저열팽창 인바합금에 있어서 CO 첨가의 영향)

  • Kim, Bong-Seo;Jo, Yeong-Am;Yoo, Kyung-Jae;Kwon, Hae-Woong;Lee, Hui-Ung;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1901-1903
    • /
    • 1999
  • To investigate invar alloy as a core material for increased capacity over-head transmission line which have high strength and low thermal expansion coefficient, hardness and thermal expansion coefficient of Fe-Ni-Co alloy have been studied. It is necessary that invar alloy have low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper. we tried to find out the effect of Ni and Co which has ferromagnetic properties and high saturation magnetization. It was found that Ni decrease thermal expansion coefficient and hardness, Co decrease thermal expansion coefficient but increase hardness in Fe-xNi-Co system. In Fe-(29-x)Ni-Co system, the material has no low thermal expansion properties substituting Co instead of Ni in concentration range of $1\sim7$%Co.

  • PDF