• Title/Summary/Keyword: 고강도 강섬유보강콘크리트

Search Result 68, Processing Time 0.023 seconds

A Study on the Residual Mechanical Properties of Fiber Reinforced Concrete with High Temperature and Load (고온 및 하중에 따른 섬유보강 콘크리트의 잔존 역학적 특성에 관한 연구)

  • Kim, Young-Sun;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Gyu-Yeon;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 0.55, 0.42 and 0.35 exposed to high temperature are compared with those obtained in fiber reinforced concrete with similar characteristics ranging from 0.05% to 0.20% polypropylene (PP) fiber volume percentage. Also, factors including pre-load levels of 20% and 40% of the maximum load at room temperature are considered. Outbreak time, thermal strain, length change, and mass loss were tested to determine compressive strength, modulus of elasticity, and energy absorption capacity. From the results, in order to prevent the explosive spalling of 50 MPa grade concretes exposed to high temperature, more than 0.05 vol. % of PP fibers is needed. Also, the cross-sectional area of PP fiber can influence the residual mechanical properties and spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and brittle failure tendency.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.

The Effect of the Amount of Polycarboxylate Superplasticizer on the Properties of Ultra-High Performance Fiber-Reinforced Concrete (폴리칼본산계 고성능감수제 사용량이 초고성능 섬유보강 콘크리트의 성질에 미치는 영향)

  • Kang, Su-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the amount of polycarboxylate superplasticizer varied from 1.2% to 3.0% of the mass of binder, the change in the flowability & rheological properties, and strength of UHPFRC was investigated with experiments. The test results presented that the increase in the amount of superplasticizer was effective in improving the flowability up to 1.8%, but addition more than 1.8% was hardly beneficial for enhancing the flowability and rhelogical properties. Compressive strengths with different amounts of superplasticizer showed that the strength with 1.8% was slightly higher than that of 1.2%, but the amount more than 1.8% caused strength reduction, which was higher as the amount increased. The results in flexural strength according to the amount of superplasticizer showed a similar trend with the results in compressive strength. When the effect of compressive strength and fiber distribution characteristics on the flexural strength was analysed separately, it was found that high amount of superplasticizer caused an effect of fiber distribution in addition to the effect of compressive strength on flexural strength. This effect seems to be closely related to the results of flowability or rheological properties.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

A Study on the Hysteretic Behavior of High Strength Steel Fiber Reinforced Concrete Beam-Column Joint (강섬유 보강 고강도 철근 콘크리트 보-기둥 접합부의 이력 거동에 관한 연구)

  • 오경남;이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.533-536
    • /
    • 1999
  • The primary purpose of this study is to investigate experimentally the effect of steel fiber reinforcement on the total energy dissipation capacity of R/C flexural members and to make a contribution to the construction of 40~60 story R/C high rise building by developing the new materials and reinforcing details which can improve the seismic performance of high-strength R/C beam-column joints. Experimental research was carried out on 4 type specimen under cyclic loading. Main variables are steel fiber reinforcement, intermediate reinforcements and yield strength of rebars. From the test results, steel fiber reinforcement can improve the ductility of R/C flexural members.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch (노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구)

  • 구봉근;김태봉;김흥룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF

Development Strengths of High Strength Headed Bars of RC and SFRC Exterior Beam-Column Joint (RC 및 SFRC 외부 보-기둥 접합부에 대한 고강도 확대머리 철근의 정착강도)

  • Duck-Young Jang;Jae-Won Jeong;Kang-Seok Lee;Seung-Hun Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.94-101
    • /
    • 2023
  • In this study, the development performance of the head bars, which is SD700, was experimentally evaluated at the RC (reinforced concrete) or SFRC (steel fiber reinforced concrete external beam-column joint. A total of 10 specimens were tested, and variables such as steel fibers, length of settlement, effective depth of the beam, and stirrups of the column were planned. As a result of the experiment, the specimens showed side-face blowout, concrete breakout, and shear failure depending on the experimental variables. In the RC series experiments with development length as a variable, it was confirmed that the development strength increased by 26.5~42.2% as the development length increased by 25-80%, which was not proportional to the development length. JD-based experiments with twice the effective depth of beams showed concrete breakout failure, reducing the maximum strength by 31.5% to 62% compared to the reference experiment. The S-series experiment, in which the spacing of the shear reinforcement around the enlarged head reinforcement was 1/2 times that of the reference experiment, increased the maximum strength by 8.4 to 9.7%. The concrete compressive strength of SFRC was evaluated to be 29.3% smaller than the concrete compressive strength of RC, but the development strength of SFRC specimens increased by 7.3% to 12.2%. Accordingly it was confirmed that the development performance of the head bar was greatly improved by reinforcing the steel fiber. Considering the results of 92% and 99% of the experimental maximum strength of the experiment arranged with 92% and 110% of the KDS-based settlement length, it is judged that the safety rate needs to be considered even more. In addition, it is required to present a design formula that considers the effective depth of the beam compared to the development length.

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.

Experiment on Flexural Analysis of RC Beams Strengthened with Composite Material Panel (복합재료 패널로 보강된 철근 콘크리트 보의 휨 실험)

  • Kim, Jin-Man;Jung, Mi-Roo;Lee, Jae-Hong;Yoon, Kwang-Sup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Experiment on flexural analysis of RC beams strengthened with composite material panel is presented. Recently, the strengthening of reinforced concrete structures using advanced fiber reinforced plastic (FRP) composites, and in particular the behavior of FRP-reinforced concrete structure is topic that has become very popular because of good corrosion resistance and easy for site handling due to their light weight. In this study, an efficient computational analysis using ABAQUS to predict the ultimate moment capacity of reinforced concrete beams strengthened with FRP is presented. Test parameters in this study are the shape of fiber arrangement (LT, DB, DBT) and the number of carbon fiber sheets (2ply, 3ply). When comparing with results of the analytical model, results of the experiments show similar values. Furthermore, reinforced concrete beam with FRP obtains improved effects for ultimate strength.

  • PDF