• Title/Summary/Keyword: 계층 모델

Search Result 1,506, Processing Time 0.033 seconds

Analysis on the Expandable Brick System Toy Model Through Characteristic Diversification (특성 다변화를 통한 확장형 브릭 시스템 완구 모델 분석)

  • Kwon, Hyo-Jeong;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1175-1184
    • /
    • 2007
  • Brick toys, once regarded as one of the most basic formative equipments, have succeeded in increasing user base and more experiments have been made to link with a variety of areas in a creative way. However, previous studies on brick were limited to its role as a tool of play and education, which resulted in relatively less number of studies on endless possibility and variability. In this regard, this study examined what made bricks evolve in the unique and advanced form and how it has developed in detail. This study presented information on the basis of theories regarding fundamental features and characteristics of brick and analyzes actual cases in a systematic way. Finally, VR design based on 3D-brick system was implemented.

  • PDF

A Visual Weighting-Based Bit Allocation Algorithm for H.264 Scalable Extension(SE) (H.264 스케일러블 확장을 위한 시각적 가중치 기반 비트 할당 알고리즘)

  • Quan, Shan Guo;Ha, Ho-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.650-657
    • /
    • 2011
  • This paper proposes a novel bit allocation algorithm for H.264 scalable extension(SE) based on a human visual system (HVS) to improve the coding efficiency. The proposed algorithm is consist of two stages: visual weighting model and visual weighting-based bit allocation algorithm. In the first stage, the visual weighting for each macroblock (MB) is analyzed according to the region of interests. Then the adaptation of the visual weighting into the bit allocation routine for each quality layer is performed for improving the visual quality. In the simulation results, it is observed that the proposed scheme can improve the subjective and objective video quality in the same bit rate, compared to the previous scalable video coding in H.264.

Development of Special Documents Classification System using Deep Learning (딥러닝을 이용한 전문분야 문서 분류 시스템 개발)

  • Jin, Sang-Hyeon;Hwang, Sang-Ho;Kang, Won-Seok;Son, Chang-Sik
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.589-591
    • /
    • 2019
  • 본 논문에서는 고도장비의 운용 및 정비를 위한 교육훈련 시스템 개발을 위해 자연어 처리와 딥러닝 기술을 이용하여 항공정비와 관련된 전문분야의 문서 분류가 가능한 방법을 제안하고자 한다. 문서 분류 모델의 개발을 위해 항공정비 교범을 텍스트 파일로 변환하여 총 4917개의 문서를 생성하였으며, 정비사 개인별 정비능력 관리(IMQC)를 기준으로 12개의 범주로 구분하였다. 수집된 문서는 전문분야의 문서인 점을 고려하여 전문용어 사전을 추가하였으며, KoNLPy를 이용하여 전처리를 수행하였다. 전문분야의 문서는 범주에 상관없이 문서 내용의 유사도가 매우 높은 특징을 가지고 있어, 특정 범주내에서 중요한 정도를 잘 표현 할 수 있는 TF-ICF를 이용하여 특징 추출을 하였다. 이후 합성곱 신경망(CNN)을 이용하여 특징 맵을 생성한 후 완전 결합 계층을 통하여 분류하였으며, 테스트 문서 983건을 분류한 결과 평균 73.6%의 분류성능을 보여주었다.

Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information (색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식)

  • Lee, Kang-Ho;Bang, Min-Young;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.207-214
    • /
    • 2010
  • A method of the region extraction and recognition of a traffic light and speed sign board in the real road environment is proposed. Traffic light was recognized by using brightness and color information based on HSI color model. Speed sign board was extracted by measuring red intensity from the HSI color information We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. The proposed algorithm shows a robust recognition rate in the image sequence which includes traffic light and speed sign board.

Analysis of Input Factors and Performance Improvement of DNN PM2.5 Forecasting Model Using Layer-wise Relevance Propagation (계층 연관성 전파를 이용한 DNN PM2.5 예보모델의 입력인자 분석 및 성능개선)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1414-1424
    • /
    • 2021
  • In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.

Effects of Synthetic Turbulent Boundary Layer on Fluctuating Pressure on the Wall (합성난류경계층이 벽면에서의 변동압력에 미치는 영향)

  • Yi, Y.W.;Lee, D.S.;Shin, K.K.;Hong, C.S.;Lim, H.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.92-98
    • /
    • 2021
  • Large Eddy Simulation (LES) has been popularly applied and used in the last several decades to simulate turbulent boundary layer in the numerical domain. A fully developed turbulent boundary layer has also been applied to predict the complicated wake flow behind bluff bodies. In this study we aimed to generate an artificial turbulent boundary layer, which is based on an exponential correlation function, and generates a series of realistic three-dimensional velocity data in two-dimensional inlet section which are correlated both in space and in time. The results suggest its excellent capability for high Reynolds number flows. To make an effective generation, a hexahedral mesh has been used and Cholesky decomposition was applied to possess suitable turbulent statistics such as the randomness and correlation of turbulent flow. As a result, the flow characteristics in the domain and fluctuating pressure near the wall are very close to those of fully developed turbulent boundary layers.

Analyzing the internal parameters of a deep learning-based distributed hydrologic model to discern similarities and differences with a physics-based model (딥러닝 기반 격자형 수문모형의 내부 파라메터 분석을 통한 물리기반 모형과의 유사점 및 차별성 판독하기)

  • Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.92-92
    • /
    • 2023
  • 본 연구에서는 대한민국 도시 유역에 대하여 딥러닝 네트워크 기반의 분산형 수문 모형을 개발하였다. 개발된 모형은 완전연결계층(Fully Connected Layer)으로 연결된 여러 개의 장단기 메모리(LSTM-Long Short-Term Memory) 은닉 유닛(Hidden Unit)으로 구성되었다. 개발된 모형을 사용하여 연구 지역인 중랑천 유역을 분석하기 위해 1km2 해상도의 239개 모델 격자 셀에서 10분 단위 레이더-지상 합성 강수량과 10분 단위 기온의 시계열을 입력으로 사용하여 10분 단위 하도 유량을 모의하였다. 모형은 보정과(2013~2016년)과 검증 기간(2017~2019년)에 대한 NSE 계수는각각 0.99와 0.67로 높은 정확도를 보였다. 본 연구는 모형을 추가적으로 심층 분석하여 다음과 같은 결론을 도출하였다: (1) 모형을 기반으로 생성된 유출-강수 비율 지도는 토지 피복 데이터에서 얻은 연구 지역의 불투수율 지도와 유사하며, 이는 모형이 수문학에 대한 선험적 정보에 의존하지 않고 입력 및 출력 데이터만으로 강우-유출 분할과정을 성공적으로 학습하였음을 의미한다. (2) 모형은 연속 수문 모형의 필수 전제 조건인 토양 수분 의존 유출 프로세스를 성공적으로 재현하였다; (3) 각 LSTM 은닉 유닛은 강수 자극에 대한 시간적 민감도가 다르며, 응답이 빠른 LSTM 은닉 유닛은 유역 출구 근처에서 더 큰 출력 가중치 계수를 가졌는데, 이는 모형이 강수 입력에 대한 직접 유출과 지하수가 주도하는 기저 흐름과 같이 응답 시간의 차이가 뚜렷한 수문순환의 구성 요소를 별도로 고려하는 메커니즘을 가지고 있음을 의미한다.

  • PDF

Thoracic Spine Segmentation of X-ray Images Using a Modified HRNet (수정된 HRNet을 이용한 X-ray 영상의 흉추 분할 기법)

  • Lee, Ye-Eun;Lee, Dong-Gyu;Jeong, Ji-Hoon;Kim, Hyung-Kyu;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.705-707
    • /
    • 2022
  • 인체의 흉부 X-ray 영상으로부터 척추질환과 관련된 의료 진단지표를 자동으로 추출하는 과정을 위하여 흉추조직의 정확한 분할이 필요하다. 본 연구에서는 HRNet 기반의 학습을 통하여 흉추조직을 분할하는 방법을 고찰한다. 분할 과정에서 영상 내의 상대적인 위치 정보가 효과적으로 반영될 수 있도록, 계층별로 영상의 고해상도의 표현이 그대로 유지되는 구조와 저해상도의 특징 지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층 신경망 모델을 채택하였다. 흉부 X-ray 영상에서 콥각도(Cobb's angle)를 산출하는 문제를 대상으로 흉추 분할을 위한 학습 방법, 진단지표 추출 방법 등을 소개하며, 부수적으로 피사체의 위치 변화 및 크기 변화 등에 강인한 성능을 제공하기 위하여 학습 데이터를 증강하는 방법론을 제시하였다. 총 145개의 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.

A Research of Optimized Metadata Extraction and Classification of in Audio (미디어에서의 오디오 메타데이터 최적화 추출 및 분류 방안에 대한 연구)

  • Yoon, Min-hee;Park, Hyo-gyeong;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.147-149
    • /
    • 2021
  • Recently, the rapid growth of the media market and the expectations of users have been increasing. In this research, tags are extracted through media-derived audio and classified into specific categories using artificial intelligence. This category is a type of emotion including joy, anger, sadness, love, hatred, desire, etc. We use JupyterNotebook to conduct the corresponding study, analyze voice data using the LiBROSA library within JupyterNotebook, and use Neural Network using keras and layer models.

  • PDF

Uncertainty assessment of point and regional frequency analysis using Bayesian method (베이지안기법을 이용한 지점 및 지역빈도해석의 불확실성 평가)

  • Lee, Jeonghoon;Lee, Okjeong;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.406-406
    • /
    • 2021
  • 극한강우사상의 분석은 다양한 극치 분포로 구성된 극치이론을 통해 가능하다. 일반적으로 단일 지점의 극한사상의 분석을 위한 지점빈도해석 (Point Frequency Analysis, PFA)이 다양한 재현기간에 해당하는 강우량을 추정하는데 널리 사용되어왔다. 하지만 수문기후학적 극치기록은 시간적 그리고 공간적으로 제한적이다. 따라서 모의 불확실성을 줄이고 신뢰성 높은 결과를 도출하기 위해 서로 유사한 분포를 가질 수 있는 인근 지점의 활용하는 지역빈도해석 (Regional Frequency Analysis, RFA) 방법이 개발되어 적용되고 있다. 본 연구에서는 부산, 울산, 경남지역의 기상청 종관기상관측시스템(Automated Synoptic Observing System, ASOS) 울산, 부산, 통영, 진주, 거창, 합천, 밀양, 산청, 거제, 남해지점 일강수량을 자료를 기반으로 Metropolis-Hasting 알고리즘을 사용하여 일반극치분포(Generalized Extreme Value, GEV)의 매개변수를 추정하고 PFA 및 RFA의 불확실성을 평가하고자 한다. 이러한 연구는 공간적 구성 요소(예, 지리적 좌표, 고도)를 고려하지 못하며 추가변수 (예, 공변량)를 분석에 결합할 수 없는 등의 RFA의 한계를 극복하고, 명시적으로 불확실성을 추정하여 결과의 신뢰성을 확보 할 수 있는 계층적 베이지안 모델의 개발에 도움이 되리라 기대된다.

  • PDF