• 제목/요약/키워드: 계층적 유사도

검색결과 429건 처리시간 0.039초

유전자 발현 데이터에 대한 클러스터링과 리프오더링 연구 (Clustering and Leaf Ordering for Gene Expression Profiles)

  • 여상수;이정원;김성권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.736-738
    • /
    • 2002
  • 계층적 클러스터링(hierarchical clustering)은 유전자 발현 데이터를 분석할 때 일반적으로 사용하는 방법이다. 계층적 클러스터링의 결과물은 유전자 발현 데이터의 덴드로그램이다. 이 덴드로그램에서 인접한 리프 노드들간의 유사도는 높아지게 하고 멀리 떨어진 노드들간의 유사도는 낮아지게 하기 위해서, 리프 노드들을 재배열하는 과정을 리프오더링이라고 한다. 본 논문에서는 전체 리프 노드들을 대상으로 하는 리프오더링 알고리즘들을 변형하여 각 클러스터별로 리프오더링을 하는 접근방식을 제안하고, 기존의 리프오더링 알고리즘을 사용했을 때의 결과와 제안하는 접근방식을 사용했을 때의 결과를 비교 분석하였다.

  • PDF

준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화 (Hierarchical and Incremental Clustering for Semi Real-time Issue Analysis on News Articles)

  • 김호용;이승우;장홍준;서동민
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.556-578
    • /
    • 2020
  • 실시간으로 발생하는 뉴스 기사로부터 이슈를 분석하기 위한 다양한 연구가 진행되어 왔다. 하지만 범주에 따라 계층적으로 이슈를 분석하는 연구는 많이 진행되지 않았고, 계층적 이슈 분석을 위한 기존의 연구에서 제안하는 방식 또한 뉴스 기사 증가에 따라 군집화 속도가 느려지는 문제점이 있다. 따라서 본 논문에서는 준 실시간으로 뉴스 기사의 이슈를 분석하는 계층적·점증적 군집화 방식을 제안한다. 제안하는 군집화 방식은 샴 신경망을 이용한 가중 코사인 유사도 측정 모델 기반의 k-평균 알고리즘을 이용한 단어 군집 기반 문서 표현 방식을 통해 뉴스 기사를 문서 벡터로 표현한다. 그리고 문서 벡터로부터 초기 이슈 군집 트리를 생성하고, 새로 발생한 뉴스 기사를 해당 이슈 군집 트리에 추가하는 점증적 군집화 방식을 제안함으로써 뉴스 기사의 계층적 이슈를 준 실시간으로 분석한다. 마지막으로, 본 논문에서 제안하는 방식과 기존 방식들과의 성능평가를 통해 제안하는 군집화 방식이 정확도 측면에서 기존 방식 대비 NMI 지표 기준 0.26 정도 성능이 향상되었고, 속도 측면에서 약 10배 이상의 성능이 향상됨을 입증하였다.

온톨로지 계층관계를 이용한 서비스 발견 알고리즘

  • 최원종;양재영;최중민;조현규;조현성;김경일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.28-30
    • /
    • 2003
  • 인터넷망의 지속적인 발달과 더불어 웹서비스가 차지하는 비중은 매우 커지고 있다. 이와 관련해 서비스 발견을 위한 다양한 노력들이 진행되었으며. 그 중에서도 DAML-S문서로 기술된 매치메이커에서 제시한 알고리즘은 서비스 발견자와 서비스 제공자사이의 서비스 발견에 대한 유사도 측정의 한 방법을 제시하고 있다. 하지만 온톨로지상의 관계표현에 있어 네 가지 규칙만을 적용하여 정밀한 유사도 측정이 불가능하다는 단점이 있다. 따라서 본 논문에서는 기존의 알고리즘의 개선을 위해 두 가지 유사도 측정함수 1) 계층구조함수 2) 계층계수함수를 정의하고, 이에 기반한 새로운 서비스 발견 알고리즘을 제시하고자 한다.

  • PDF

레벨 기반의 유사도 계산을 이용한 PropBank 의미역과 Sejong 의미역 간의 자동 변환 (Automatic Transformation of Semantic Roles between PropBank and Sejong using Similarity Estimation based on Tree Level)

  • 윤영신;석미란;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.221-224
    • /
    • 2014
  • 의미 표지 부착 작업은 구문 표지 부착된 문장의 술어-논항 구조를 파악하여 논항에 적절한 의미역을 부착하는 과정이다. 이 작업을 통하여 생성되는 의미 표지 부착 말뭉치는 의미역 결정에 있어서 절대적으로 필요한 자원이 된다. 의미 표지 부착 말뭉치로는 세계적으로 PropBank가 널리 활용되고 있는데 이를 한국어에 적용시키기 위해서는 PropBank 의미역과 Sejong 의미역 간의 자동 변환이 필요하다. 이전에 제안되었던 이종 의미역 간의 자동변환 방법에서는 명사 계층의 구조 정보를 반영하지 않았다는 문제점이 있었다. 본 논문에서는 이러한 문제점을 보강하기 위하여 명사 계층구조를 반영하여 한국어 PropBank 의미역을 Sejong 의미역으로 자동 변환하는 방법을 제안한다. 제안하는 방법은 PropBank와 Sejong의 맵핑관계 중에서 1:N으로 맵핑되는 PropBank 의미역을 기준으로 명사 계층구조에서 변환 대상 의미역을 가지고 있는 단어와 변환 후보 의미역을 가진 단어들의 개념번호를 뽑아 두 단어 간의 거리를 측정한다. 그리고 레벨 당 가중치를 주어 유사도 계산을 하여 유사도가 적은 값으로 의미역을 자동 변환한다. 본 논문에서 제안하는 방법은 0.8의 성능을 보인다.

  • PDF

OPAC에서 자동분류 열람을 위한 계층 클러스터링 연구 (Hierarchic Document Clustering in OPAC)

  • 노정순
    • 정보관리학회지
    • /
    • 제21권1호
    • /
    • pp.93-117
    • /
    • 2004
  • 본 연구는 OPAC에서 계층 클러스터링을 응용하여 소장자료를 계층구조로 분류하여 열람하는데 사용될 수 있는 최적의 계층 클러스터링 모형을 찾기 위한 목적으로 수행되었다. 문헌정보학 분야 단행본과 학위논문으로 실험집단을 구축하여 다양한 색인기법(서명단어 자동색인과 통제어 통합색인)과 용어가중치 기법(절대빈도와 이진빈도), 유사도 계수(다이스, 자카드, 피어슨, 코싸인, 제곱 유클리드), 클러스터링 기법(집단간 평균연결, 집단내 평균연결, 완전연결)을 변수로 실험하였다. 연구결과 집단간 평균연결법과 제곱 유클리드 유사도를 제외하고 나머지 유사도 계수와 클러스터링 기법은 비교적 우수한 클러스터를 생성하였으나, 통제어 통합색인을 이진빈도로 가중치를 부여하여 완전연결법과 집단간 평균연결법으로 클러스터링 하였을 때 가장 좋은 클러스터가 생성되었다. 그러나 자카드 유사도 계수를 사용한 집단간 평균연결법이 십진구조와 더 유사하였다.

의미정보의 효율적인 분류를 위한 계층적 중복 문서 클러스터링 (Hierarchical Overlapping Document Clustering for Efficient Categorization of Semantic Information)

  • 강동혁;주길홍;이원석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.175-177
    • /
    • 2001
  • 기존의 문서 클러스터링 알고리즘은 모든 문서가 각각 하나의 클러스터에만 할당되도록 설계되어 문서에 여러 개의 주제가 포함되어 있을지라도 문서는 유사도 비교에 의해 오직 하나의 플러스터에 포함된다는 단점이 있다. 본 연구에서는 이러한 문서 플러스터링 방법의 한계를 파악하기 위해 문서가 여러 개의 클러스터에 포함될 수 있는 계층적 중복 문서 클러스터링을 제안한다. 또한, 문서 클러스터링의 정확도를 높이기 위해서 불용어 제거 알고리즘을 이용해 불용어를 제거하여 클러스터링에 사용되는 키워드를 선별하고, 단어가중치 산출을 위한 TF*NHDF 공식을 제안한다.

  • PDF

우리말샘 사전을 이용한 단어 의미 유사도 측정 모델 개발 (A Word Semantic Similarity Measure Model using Korean Open Dictionary)

  • 김호용;이민호;서동민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.3-4
    • /
    • 2018
  • 단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.

  • PDF

동적인 성능과 유사도 기반의 계층형 P2P 시스템 (Dynamic Capacity and Similarity based Two-Layer P2P Network)

  • 민수홍;조동섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2006
  • 최근 P2P (Peer-to-Peer) 시스템은 인터넷의 사용량 증가와 네트워크 속도의 증가, 개인 PC 의 성능 향상과 같은 외부적인 요인과 기존의 클라이언트 서버와 비교해 보다 효율적으로 다양한 자원을 공유할 수 있다는 내부적인 장점으로 인해 관심이 증가되고 있다. 초기 P2p 시스템은 냅스터와 같은 중앙 집중형 기반에서 JXTA 와 같은 순수 모델로 변화 되었으며, 최근 두 가지의 장점을 결합한 수퍼 피어 기반의 계층형 시스템이 연구되고 있다. 본 논문에서는 피어를 수퍼 피어와 일반 피어로 분류하는 2 계층 P2P 시스템에 대해 연구하였다. 제안한 시스템은 일반 피어가 동적인 성능과 유사도를 기반으로 최적의 수퍼 피어를 선택하도록 한다. 일반 피어는 가장 적합한 수퍼 피어를 선택함으로서 보다 효율적으로 쿼리를 처리할 수 있으며 일반 피어가 요구하는 서비스와 유사한 서비스를 제공함으로써 일반 피어의 만족도를 향상 시킬 수 있다.

  • PDF

계층적 클러스터링에서 분류 대표어 선정에 관한 연구 (A Study on Cluster Topic Selection in Hierarchical Clustering)

  • 이상선;이신원;안동언;정성종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.669-672
    • /
    • 2004
  • 정보의 양이 많아지면서 정보 검색 시스템에 검색 결과를 자동으로 구조화하는 계층적 클러스터링을 적용하는 시도가 늘고 있다. 계층적 클러스터링은 문서 간의 유사도를 통해 클러스터를 계층 구조로 만들어 검색 성능을 높이고 결과를 사용자에게 이해하기 쉽게 보여준다. 계층 구조는 검색 결과를 요약하는 것이기 때문에 클러스터의 내용을 효과적으로 함축할 수 있는 대표어의 선정이 중요하다. 각 클러스터의 대표어를 선정하기 위해 대표어에 명사인 단어만 추출하고 상위 클러스터 대표어에 사용된 단어는 하위 클러스터에 사용하지 않는 방법을 적용하여 대표어의 질을 높였다.

  • PDF

유사 쉐이더 검색을 위한 계층적 인지감 추출 (Hierarchical Cognition Extraction for Similar Shader Search)

  • 김두열;장민희;김상욱;이재호;최진성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.265-268
    • /
    • 2008
  • 유사 쉐이더 검색이란 그래픽 디자이너가 원하는 쉐이더와 유사한 쉐이더를 검색하는 것을 의미한다. 본 논문의 저자들은 유사 쉐이더 검색을 이용하여 쉐이더 생성 시 발생하는 시행착오와 시간을 크게 줄일 수 있는 쉐이더 스페이스 네비게이터를 제안한 바 있다. 유사 쉐이더 검색을 수행하기 위해서는 서로 다른 네트워크 구조를 가지는 쉐이더들로부터 동일한 특징들을 추출할 수 있는 방안이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위하여 계층적 인지감 추출 프레임워크를 제안한다. 제안하는 프레임워크는 복잡한 네트워크를 가지는 쉐이더들을 분석하여 검색에 필요한 고정된 소수의 특성들만을 추출한다. 추출된 특성들은 서로 다른 네트워크 구조에서도 동일한 수와 형태를 갖기 때문에 다른 구조의 쉐이더들 간에도 유사도를 쉽게 측정할 수 있다. 다양한 실험을 수행함으로써 제안하는 프레임 워크를 이용하여 유사 쉐이더를 효과적으로 검색할 수 있음을 보인다.