• Title/Summary/Keyword: 계층적 베이지안 추정법

Search Result 3, Processing Time 0.018 seconds

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.

Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information (기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성)

  • Lee, Jeonghoon;Lee, Okjeong;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.747-757
    • /
    • 2021
  • Quantification of extreme rainfall is very important in establishing a flood protection plan, and a general measure of extreme rainfall is expressed as an T-year return level. In this study, a method was proposed for quantifying spatial distribution and uncertainty of daily rainfall depths with various return periods using a hierarchical Bayesian model combined with climate and geographical information, and was applied to the Seoul-Incheon-Gyeonggi region. The annual maximum daily rainfall depth of six automated synoptic observing system weather stations of the Korea Meteorological Administration in the study area was fitted to the generalized extreme value distribution. The applicability and reliability of the proposed method were investigated by comparing daily rainfall quantiles for various return levels derived from the at-site frequency analysis and the regional frequency analysis based on the index flood method. The uncertainty of the regional frequency analysis based on the index flood method was found to be the greatest at all stations and all return levels, and it was confirmed that the reliability of the regional frequency analysis based on the hierarchical Bayesian model was the highest. The proposed method can be used to generate the rainfall quantile maps for various return levels in the Seoul-Incheon-Gyeonggi region and other regions with similar spatial sizes.

A case study of small area estimation about charter and monthly rent price index (소지역모형 추정기법을 활용한 전·월세 추정)

  • Lee, Seung Soo;Park, Won Ran;Chung, Sung Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • In this study we compared three models for small area estimation, Fay-Herriot, Hierarchical Bayses model and spatio-temporal model about charter, monthly rent price index. Charter, monthly rent price of Korea are important issue in these days. Because housing type rapidly changes from self to charter and monthly rent. The accuracy of the estimation was checked on four scales, that is ARB, ASRB, AAB, ASD. In this result, the spatio-temporal model among applied models has most optimal scales about small area estimation of charter and monthly rent index.