• 제목/요약/키워드: 계층적 베이지안

검색결과 62건 처리시간 0.028초

유비쿼터스 가정환경을 위한 계층적 베이지안 네트워크 기반 상호주도형 대화 에이전트 (A mixed-initiative conversational agent using hierarchical Bayesian networks for ubiquitous home environments)

  • 송인지;홍진혁;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.157-160
    • /
    • 2005
  • 유비쿼터스 환경에서 다양한 서비스를 사용자에게 제공하기 위해 지능형 에이전트는 먼저 사용자의 의도를 정확히 파악해야 한다. 명령어 기반의 기존 사용자 인터페이스와는 달리, 대화는 인간과 에이전트 사이의 유연하고 풍부한 의사소통에 유용하지만, 사용자의 배경지식이나 대화의 문맥에 따라 그 표현이 매우 다양하기 때문에 본 논문에서는 '상호주도형' 의사소통을 위한 계층적 베이지안 네트워크를 이용하여 사용자와 에이전트 사이에 발생하는 대화의 모호성을 해결한다. 서비스 추론 시 정보가 부족할 경우에는 계층적 베이지안 네트워크를 이용하여 추가로 필요한 정보를 분석하고 사용자로부터 수집한다. 제안하는 방법을 유비쿼터스 가정환경에 적용하고 시뮬레이션 환경을 구축하여 그 유용성을 확인하였다.

  • PDF

준모수적 계층적 선택모형에 대한 베이지안 방법 (A Bayesian Method to Semiparametric Hierarchical Selection Models)

  • 정윤식;장정훈
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.161-175
    • /
    • 2001
  • 메타분석(Meta-analysis)은 서로 독립적으로 연구되어진 결과들을 전체적인 하나의 결과로 도출하기 위해 사용되어지는 통계적 방법이다. 이러한 통계적 방법을 설명할 모형으로는 선택모형(selection model)을 포함한 계층적 모형(hierarchical model)을 사용하며, 이러한 모형들은 베이지안 메타분석에 유용한 것으로 알려져 있다. 그러나, 메타분석의 자료들은 일반적으로 출판편의(publication bias)를 갖고 있으므로 이를 극복하고자 가중함수(weight function)를 이용하여 분포함수를 새롭게 정의하여 사용한다. 최근에 Silliman(1997)은 계층적 모형(hierarchical model)에 가중함수를 첨부한 계층적 선택모형(hierarchical selection model)을 정의하고 모수적 베이지안 방법을 제시하였다. 본 연구에서는 미관측된 연구효과에 디리슈레 과정 사전분포(Dirichlet process prior)를 적용한 준모수적 계층적 선택모형(semiparametric hierarchical selection models)을 소개한다. 여기서 제시된 준모수적 계층적 선택모형을 베이지안 방법으로 추정하기 위하여 마코프 연쇄 몬테칼로(Markov chain Monte Carlo)방법을 이용한다. 제시된 방법을 적용하기 위하여 실제 자료(Johnson, 1993)인 충치를 예방하기 위한 두 가지의 예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구를 이용하여 메타분석을 한다.

  • PDF

계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식 (Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition)

  • 성재모;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2004
  • 본 논문에서는 필기체 숫자인식을 위해서 계층적으로 서로 다른 레벨의 정보를 표현할 수 있는 구조화된 특징들의 추출 방법과 특징들 사이에 의존도를 이용하여 분류하는 베이지안 망을 제안한다. 이러한 계층적 특징들을 추출하기 위해서 레벨 단위로 가버 필터들을 정의하고, FLD(Fisher Linear Discriminant) 척도를 이용하여 최적화된 가버 필터들을 선택한다. 계층적 가버 특징들은 최적화된 가버 특징들을 이용하여 추출되며, 하위 레벨일수록 더욱 국부적인 정보를 표현한다. 추출된 계층적 가버 특징들의 분류성능 향상을 위해서 가버 특징들 사이의 계층적 의존도를 이용하는 베이지안 망을 생성한다. 본 논문에서 제안하는 방법은 naive Bayesian 분류기, k-nearest neighbor 분류기, 그리고 신경망 분류기들과 함께 필기체 숫자인식에 적용되어 계층적 가버 특징들의 효율성과 계층적 의존도를 이용하는 베이지안 망은 분류성능을 향상시킬 수 있다는 것을 보여준다.

시공간 베이지안 계층모형-미국 연기온 편차자료에 적용-

  • 이의규;문명상
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.163-168
    • /
    • 2002
  • 전형적인 시공간모형은 시공간 변이도(semivariogram) 또는 공분산 함수(covariance function)를 필요로 한다. 본 논문에서는 계산하기 어렵고 현실적이지 못한 결합 공분산함수를 통한 고전적 모형 대신, 일련의 독립적인 조건분포를 이용하는 보다 현실적인 베이지안 계층모형을 이용한다. 미국 전 지역에 산재해 있는 138개 기온 관측소로부터 얻어진 61년(1920-1980) 동안의 연기온편차 자료에 시공간 베이지안 계층모형을 적용하고 순수시계열모형에서의 적합값과 제안된 모형의 적합값을 비교분석한다.

  • PDF

왜도 타원형 분포를 이용한 준모수적 계층적 선택 모형 (Semiparametric Bayesian Hierarchical Selection Models with Skewed Elliptical Distribution)

  • 정윤식;장정훈
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.101-115
    • /
    • 2003
  • 본 논문에서는 Chen, Dey와 Shao(1999), Branco와 Dey(2001)가 제안한 왜도가 있는 두터운 꼬리를 가지는 오차 분포와 디리슈레 과정 사전분포를 이용한 베이지안 메타분석 (meta-analysis)을 하고자 한다. 베이지안 메타분석을 위하여 가중함수를 고려한 계층적 선택 모형을 이용한다. 이때의 오차항은 왜도가 있는 비정규 분포로 가정한다. 이를 위하여 우선 왜도 타원형 분포의 일반적인 족을 소개한다 이 분포족중 왜도 정규분포와 왜도 t 분포를 오차항 분포로 이용한 베이지안 계층적 선택 모형을 고려하며, 이 때 발생하는 복잡한 베이지안 계산은 MCMC 방법으로 해결한다. 마지막으로, 실제 자료(Johnson, 1993)인 두 가지의 충치예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구 자료를 이용하여 본 연구에서 제시된 베이지안 방법을 이용하여 메타분석을 한다.

대화형 에이전트의 주제 추론을 위한 계층적 베이지안 네트워크의 자동 생성 (Automatic Construction of Hierarchical Bayesian Networks for Topic Inference of Conversational Agent)

  • 임성수;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.877-885
    • /
    • 2006
  • 최근에 대화형 에이전트에서 사용자 질의의 주제 추론을 위하여 베이지안 네트워크가 효과임이 발표되었다. 하지만 베이지안 네트워크는 설계에 있어서 많은 시간이 소요되며, 스크립트(대화를 위한 데이타베이스)의 추가 변경시에는 베이지안 네트워크도 같이 수정해야 하는 번거로움이 있어 대화형 에이전트의 확장성을 저해하고 있다. 본 논문에서는 스크림트로부터 베이지안 네트워크를 자동으로 생성함으로써 베이지안 네트워크를 이용한 대화형 에이전트의 확장성을 높이는 방법을 제안한다. 제안한 방법은 베이지안 네트워크의 구성노드를 계층적으로 설계하고, Noisy-OR gate를 사용하여 베이지안 네트워크의 조건부 확률 테이블을 구성한다. 피험자 10명이 대화형 에이전트를 위한 베이지안 네트워크를 수동 설계한 것과 비교한 결과 제안하는 방법이 효과적임을 알 수 있었다.

로버스트 베이지안 메타분석 (Robust Bayesian meta analysis)

  • 최성미;김달호;신임희;김호각;김상경
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.459-466
    • /
    • 2011
  • 본 논문은 독립적으로 수행된 연구결과를 합쳐서 일반적인 결론을 도출하는 메타분석을 위한 로버스트 계층적 베이지안 모형을 고려한다. 사전정보가 정규분포를 따른다는 가정 대신 정규분포의 척도혼합을 사용하여 정규분포보다 더 두꺼운 꼬리를 가지는 사전분포를 사용한다. 나아가 개별 분석의 분산이 알려져 있지 않은 경우를 계층적 베이지안 모형에 포함하여 메타분석을 수행하고자 한다. 깁스 표집을 사용하여 추정값을 계산하고, 실제 자료를 사용하여 제안된 방법을 예시한다.

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations)

  • 김용구
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.137-149
    • /
    • 2015
  • 본 논문에서는 비정상 극치 강수 자료에 대해 계층적 베이지안 모형을 적용하여 시간에 따른 모수의 변화를 추정하며, 미래 확률 강수량에 대한 극단값 분포를 예측하고 더 나아가 반환기간에 대한 경향과 예측 값을 얻고자 한다. 이전의 고전적 통계 방법을 통한 강수 자료의 모수 추정연구의 경우, 자료의 정상성 가정 하에 고정된 모수를 추정하는 방법으로, 최근 나타난 비정상 강수 사상과 같이 강수량이 가지는 분포의 모수적 변화가 예상되는 경우 해석상 문제가 발생한다. 이러한 문제점을 해결하기 위해 모형의 관심모수에 시간에 따른 자기 상관 선형 회귀 함수를 적합한 계층적 베이지안 모형을 고려한다. 제안된 모형의 효율성을 확인하기 위해서 1973년부터 2011년까지 39년 동안의 우리나라 여러지역의 기상 관측소에서 관측된 일일 강우량 자료가 사용하여 대표적인 극단값 분포인 Generalized Extreme Value(GEV) 분포에 적합시키고, 계층적 베이지안 모형을 이용하여 이들 분포의 모수들에 자기상관 시간모형을 소개한 후 우리나라 여러지역에 대한 반환기간에 대한 시간에 따른 경향을 확인하였다.

연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크 (A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition)

  • 허승주;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1028-1033
    • /
    • 2009
  • 본 논문은 컴퓨터 마우스를 제어하기 위한 실시간 손 제스처 인식 방법을 제안한다. 다양한 제스처를 표현하기 위해, 손 제스처를 연속적인 손 모양의 시퀀스로 정의하고, 이러한 손 제스처를 인식하기 위한 계층적 베이지안 네트워크를 디자인한다. 제안하는 방법은 손 포스처와 제스처 인식을 위한 계층적 구조를 가지며, 이는 특징 추출과정에서 발생하는 잡음에 강인하다는 장점을 가진다. 제안하는 방법의 유용성을 증명하기 위해, 제스처 기반 가상 마우스 인터페이스를 개발하였다. 실험에서 제안한 방법은 단순한 배경에서는 94.8%, 복잡한 배경에서는 88.1%의 인식률을 보였으며, HMM 기반의 기존 방법보다 우수한 성능을 보였다.

계층적 베이지안 네트워크를 이용한 대화형 에이전트의 문맥유지 (Context Management of Conversational Agent using Hierarchical Bayesian Network)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.259-261
    • /
    • 2002
  • 대화형 에이전트는 자연어를 기반으로 사용자질외에 대한 적절한 정보를 제공하고, 사용자와 지속적으로 대화를 진행해가는 시스템이다. 사용자의도를 파악하고 적절히 대답하기 위해서는 사용자질의에 대한 효과적인 분석이 필요하다. 또한 단발적인 대답뿐 아니라 지속적인 대화가 가능해야 한다. 본 논문에서는 사용자 모델링에 사용되는 베이지안 네트워크를 계층적으로 구성하여 사용자질의로부터 사용자의도를 추론하며, 이전 대화상태를 활용하여 지속적인 대화가 가능하도록 한다. 실제 웹 사이트를 안내하는 대화형 에이전트를 설계하며 적용해봄으로써 그 가능성을 확인해 볼 수 있었다.

  • PDF