• Title/Summary/Keyword: 계층적 베이지안

Search Result 62, Processing Time 0.022 seconds

A mixed-initiative conversational agent using hierarchical Bayesian networks for ubiquitous home environments (유비쿼터스 가정환경을 위한 계층적 베이지안 네트워크 기반 상호주도형 대화 에이전트)

  • Song In-Jee;Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • 유비쿼터스 환경에서 다양한 서비스를 사용자에게 제공하기 위해 지능형 에이전트는 먼저 사용자의 의도를 정확히 파악해야 한다. 명령어 기반의 기존 사용자 인터페이스와는 달리, 대화는 인간과 에이전트 사이의 유연하고 풍부한 의사소통에 유용하지만, 사용자의 배경지식이나 대화의 문맥에 따라 그 표현이 매우 다양하기 때문에 본 논문에서는 '상호주도형' 의사소통을 위한 계층적 베이지안 네트워크를 이용하여 사용자와 에이전트 사이에 발생하는 대화의 모호성을 해결한다. 서비스 추론 시 정보가 부족할 경우에는 계층적 베이지안 네트워크를 이용하여 추가로 필요한 정보를 분석하고 사용자로부터 수집한다. 제안하는 방법을 유비쿼터스 가정환경에 적용하고 시뮬레이션 환경을 구축하여 그 유용성을 확인하였다.

  • PDF

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

시공간 베이지안 계층모형-미국 연기온 편차자료에 적용-

  • Lee, Ui-Gyu;Mun, Myeong-Sang;Gunst, Richard F.
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.163-168
    • /
    • 2002
  • 전형적인 시공간모형은 시공간 변이도(semivariogram) 또는 공분산 함수(covariance function)를 필요로 한다. 본 논문에서는 계산하기 어렵고 현실적이지 못한 결합 공분산함수를 통한 고전적 모형 대신, 일련의 독립적인 조건분포를 이용하는 보다 현실적인 베이지안 계층모형을 이용한다. 미국 전 지역에 산재해 있는 138개 기온 관측소로부터 얻어진 61년(1920-1980) 동안의 연기온편차 자료에 시공간 베이지안 계층모형을 적용하고 순수시계열모형에서의 적합값과 제안된 모형의 적합값을 비교분석한다.

  • PDF

Semiparametric Bayesian Hierarchical Selection Models with Skewed Elliptical Distribution (왜도 타원형 분포를 이용한 준모수적 계층적 선택 모형)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.101-115
    • /
    • 2003
  • Lately there has been much theoretical and applied interest in linear models with non-normal heavy tailed error distributions. Starting Zellner(1976)'s study, many authors have explored the consequences of non-normality and heavy-tailed error distributions. We consider hierarchical models including selection models under a skewed heavy-tailed e..o. distribution proposed originally by Chen, Dey and Shao(1999) and Branco and Dey(2001) with Dirichlet process prior(Ferguson, 1973) in order to use a meta-analysis. A general calss of skewed elliptical distribution is reviewed and developed. Also, we consider the detail computational scheme under skew normal and skew t distribution using MCMC method. Finally, we introduce one example from Johnson(1993)'s real data and apply our proposed methodology.

Automatic Construction of Hierarchical Bayesian Networks for Topic Inference of Conversational Agent (대화형 에이전트의 주제 추론을 위한 계층적 베이지안 네트워크의 자동 생성)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.877-885
    • /
    • 2006
  • Recently it is proposed that the Bayesian networks used as conversational agent for topic inference is useful but the Bayesian networks require much time to model, and the Bayesian networks also have to be modified when the scripts, the database for conversation, are added or modified and this hinders the scalability of the agent. This paper presents a method to improve the scalability of the agent by constructing the Bayesian network from scripts automatically. The proposed method is to model the structure of Bayesian networks hierarchically and to utilize Noisy-OR gate to form the conditional probability distribution table (CPT). Experimental results with ten subjects confirm the usefulness of the proposed method.

Robust Bayesian meta analysis (로버스트 베이지안 메타분석)

  • Choi, Seong-Mi;Kim, Dal-Ho;Shin, Im-Hee;Kim, Ho-Gak;Kim, Sang-Gyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.459-466
    • /
    • 2011
  • This article addresses robust Bayesian modeling for meta analysis which derives general conclusion by combining independently performed individual studies. Specifically, we propose hierarchical Bayesian models with unknown variances for meta analysis under priors which are scale mixtures of normal, and thus have tail heavier than that of the normal. For the numerical analysis, we use the Gibbs sampler for calculating Bayesian estimators and illustrate the proposed methods using actual data.

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

Context Management of Conversational Agent using Hierarchical Bayesian Network (계층적 베이지안 네트워크를 이용한 대화형 에이전트의 문맥유지)

  • 홍진혁;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.259-261
    • /
    • 2002
  • 대화형 에이전트는 자연어를 기반으로 사용자질외에 대한 적절한 정보를 제공하고, 사용자와 지속적으로 대화를 진행해가는 시스템이다. 사용자의도를 파악하고 적절히 대답하기 위해서는 사용자질의에 대한 효과적인 분석이 필요하다. 또한 단발적인 대답뿐 아니라 지속적인 대화가 가능해야 한다. 본 논문에서는 사용자 모델링에 사용되는 베이지안 네트워크를 계층적으로 구성하여 사용자질의로부터 사용자의도를 추론하며, 이전 대화상태를 활용하여 지속적인 대화가 가능하도록 한다. 실제 웹 사이트를 안내하는 대화형 에이전트를 설계하며 적용해봄으로써 그 가능성을 확인해 볼 수 있었다.

  • PDF