• Title/Summary/Keyword: 계절성능 계수

Search Result 25, Processing Time 0.022 seconds

The effect on the seasonal performance of an inverter compressor with higher and lower operating range (인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향)

  • 박윤철;하도용;민만기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF

Analysis Study of Seasonal Performance Factor for Residential Building Integrated Heat Pump System (주거용 건물에서의 히트펌프 시스템 연성능 평가에 관한 연구)

  • Kang, Eun-Chul;Min, Kyoung-Chon;Lee, Kwang-Seob;Lee, Euy-Joon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • Heat pump unit performance is represented by the COP(Coefficient of Performance) and expressed by the one point design condition according to KS C 9306. However, when heat pump operated to the real buildings, the simulations are changed continuously according to the actual weather conditions, the building load and heat pump source conditions. The purpose of this paper is to evaluate the APF(Annual performance factor) for a climate dependent building integrated air-to-air heat pump system in major cities in Korea. TRNSYS simulation tool with an international MV standard based IPMVP 4.4.2 was utilized to perform the annual performance analysis. The APF with the multi-performance data based method was calculated as 2.29 for Daejeon residential building case while Busan residential building case appeared as the highest with 2.36.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

An Experimental Study on the Performance of an Inverter Heat Pump with a Variation of Frequency and Refrigerant Charging Amount (인버터 열펌프의 주파수 및 냉매봉입량 변화에 따른 시스템 성능특성의 실험적 연구)

  • 최득관;김경천;김주상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • In the air-conditioning industry, the refrigerant charging amount is one of the most important parameters affecting the energy efficiency ratio of heat pumps. An experimental study was performed on the characteristics of an inverter driven air-to-air heat pump system with a variation of compressor frequency and charging amount of refrigerant. The frequency was altered from 40Hz to 70Hz and the charging amount was changed from 1.6kg to 2.8kg in tests. The variation of performance was measured with switching of the expansion valve on each frequency and charging amount. All the tests were performed at the Korean Standard and test conditions of the air conditioners. As results, it was found that there existed the charging amount and the level of the suction gas superheat which provided the highest energy efficiency ratio at all the frequency bands.

  • PDF

A Study on the Operating Characteristics of the Heat Pump System using the Municipal Waste Water as Heat Source (생活廢水熱源 熱펌프시스템 運轉特性 考察)

  • 신현준;박준택
    • Journal of Energy Engineering
    • /
    • v.4 no.2
    • /
    • pp.270-277
    • /
    • 1995
  • 생활수준의 향상으로 따라 민생용 에너지의 소비량이 급격히 증가함에 따라 일상생활에서 발생되는 폐수의 양과 온도가 높아지면서 이들은 주요 에너지자원의 대상으로 부각되고 있다. 즉, 폐수열은 열원으로서의 경제성이 향상되어 에너지자원으로서의 잠재력이 높아지고 있으며, 또한 화석에너지의 과다 사용을 인한 환경오염이 심각한 사회문제로 부각되면서 이들 에너지의 유효이용에 대한 관심이 높아지고 있다. 본 연구는 일상생활에서 발생되는 생활폐수를 대상으로 냉·난방에너지원으로서의 활용 가치를 평가히기 위한 열특성을 파악하고, 이 폐수열을 열원으로 하는 熱펌프시스템을 제작·설치하여 운전 성능을 파악하므로서 장차의 에너지수요에 대응하기 위한 기초자료를 제시하는데 목적이 있다. 이를 위해 아파트 단지를 대상으로 폐수열의 계절별 온도분포를 측정하고, 열원의 특성에 적합한 폐수열교환기, 세척장치 등 요소기기의 구조를 도출하였으며 이를 이용한 熱펌프시스템을 제작하여 성능실험을 수행하였다. 실험결과 난방기의 성적계수(COP)h를 3.5이상으로 유지할 수 있는 비교적 경제성이 높은 熱펌프시스템의 구성이 가능한 것으로 나타났다.

  • PDF

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

An Overview on Standards for Seasonal Performance Evaluation of Multi-type Air Conditioners (멀티형 에어컨의 기간에너지소비효율 평가규격에 관한 연구)

  • 박윤철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-100
    • /
    • 2004
  • Energy efficiency evaluation method for a multi-type air conditioning system still has not been developed. In this study, analysis on capacity range and evaluating method of standards for air conditioners was conducted with world-wide Standards. It is not a proper approach to use the standards for residential air conditioner to multi type air conditioners. Some difficulties and problems are commented in this study with overview of the standards. Through the analytic research, an evaluating method for multi type air conditioner was suggested with Integrated Part Load Value (IPLV). The suggested concept for evaluating energy efficiency during part load condition considers building load pattern and operating hours of the system at different locations. Load was weighted in IPLV to consider not only the concept of occurrence of outdoor temperature such as bin method but also operation hours of the system. An experiment about the IPLV was conducted with variable air volume ducted type air conditioning system and multi-type system through modified code tester to give a glance at quantitative value of the IPLV.

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.

An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System (가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구)

  • Kong, Hyoung Jin;Kang, Sung Jae;Yun, Kyoung Sik;Lim, Hyo Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

A Study of Air-source Heat Pump Performance Analysis for Replacing Night Time Electric Heating Boiler (심야전기보일러 대체용 공기열 히트펌프 성능평가)

  • Jo, J.Y.;Jung, H;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2011
  • The night time electric cost is cheaper due to electric supply and demand policy in Korea from 1985. Currently about 900,000 customers are using night time electric heating boilers and this causes shift of peak demand time to night in winter and increase of deficit spending. To solve this problem, replacing night time electric heating boiler by air-source heat pump using night time electricity has been proposed. An air-source heat pump can provide efficient heating equipment especially in a warm climate. For estimating the night time electric heat pump COP(Coefficient of Performance), Korean Standard KS C 9306:2010 and European Standard EN-14511:2004 is available. SCOP(Seasonal COP) using European weather bin data is also calculated. SCOP is not available yet but European Committee for Standardization will establish a standard in the near future. The evaluation result show that the replacing night time electric heating boiler by heat pump can be possible.