• Title/Summary/Keyword: 계면 결함 밀도

Search Result 111, Processing Time 0.029 seconds

Deposition mechanism of $Bi_4Ti_3O_{12}$ films on Si by MOCVD and property improvement by pulse injection method (MOCVD $Bi_4Ti_3O_{12}$ 박막의 실리콘 위에서의 증착기구 및 유기 금속원료의 펄스주입법에 의한 박막 특성 개선)

  • 이석규;김준형;최두현;황민욱;엄명윤;김윤해;김진용;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.373-378
    • /
    • 2000
  • There was a great difference in the formation kinetics of $TiO_2$ and $Bi_2O_3$ on silicon, but the growth of bismuth titanate (BIT) thin film was mainly limited by the formation of $TiO_2$. As a result, the BIT film was easy to be lack of bismuth. The pulse injection metalorganic chemical vapor deposition (MOCVD) process was introduced in order to overcome this problem by recovering the insufficient bismuth content in the film. By this pulse injection method, bismuth content was increased and also the uniform in-depth composition of the film was attained with a abrupt $Bi_4Ti_3O_{12}/Si$ interface. In addition, the crystallinity of $Bi_4Ti_3O_{12}$ thin film prepared by pulse injection process was greatly improved and the leakage current density was lowered by 1/2~1/3 of magnitude. Clockwise hysteresis of C-V was observed and the ferroelectric switching was confirmed for $Bi_4Ti_3O_{12}$ film deposited by pulse injection method.

  • PDF

PECVD를 이용한 광 흡수층에서의 Germane 유량변화가 a-SiGe:H 박막 태양전지에 미치는 영향

  • Son, Won-Ho;Kim, Ae-Ri;Ryu, Sang-Hyeok;Choe, Si-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 박막형태로 제작이 가능한 비정질 실리콘은 결정질 실리콘에 비하여 AM-1 (Air Mass 1:100mW/cm2)조건하에서 10-3 S/cm 정도의 높은 광전기전도도와 가시광선 영역($4000{\sim}7000{\AA}$)에서 약 10배의 높은 광흡수계수를 가지며, $300^{\circ}C$ 이하의 낮은 기판온도에서 다양한 기판위에 대면적으로 제작이 가능할 뿐만 아니라 제작공정이 단순하여 제작비용이 저렴하다는 이점이 있다. 본 실험에서 제작된 모든 박막은 PECVD로 증착하였으며 구조는 p-i-n superstrate형 구조를 사용하였고, 각 박막의 두께는 p-a-Si:H/i-a-SiGe:H/n-a-Si:H ($300{\AA}/2000{\AA}/600{\AA}$)으로 고정하였다. a-Si:H (hydrogenated amorphous silicon) 태양전지의 광 흡수층인 i-layer에서의 germane 가스 유량 변화(0, 20, 40. 60, 80, 100 sccm)에 대한 흡수율의 차이를 UV/Vis/Nir spectrophotometer (ultraviolet/visible/near infrared spectrophotometer)를 통해 확인하고, 그에 따른 a-Si:H 박막 태양전지를 제작하여 solar simulator를 사용하여 AM 1.5 G의 환경 조건에서 태양전지 특성을 평가하였다. 그 결과 germane 가스 유량이 증가함에 따라 파장에 대한 absorptance (a.u.)값이 증가함을 알 수 있었으며, 흡수되는 파장영역의 범위가 장파장으로 확대됨을 확인할 수 있었다. 또한 germane 가스 유량이 60 sccm 일때 a-SiGe:H 박막 태양전지 변환효율이 3.80%로 최대값을 가졌다. 실험에서 germane 가스 유량이 증가할수록 흡수율이 높아져 태양전지특성이 향상될 거라 예상 했지만, 100 sccm보다 60 sccm일 때가 단락전류밀도 값과 변환효율이 높다는 것을 확인할 수 있었다. 이는 각 layer사이에 계면상의 문제가 있을 거라 예상되며 직렬저항측정을 통해 확인할 수 있다.

  • PDF

First-principles Study on the Magnetism and Electronic Structure of (CrAs)3(MnAs)3(110) Superlattice ((CrAs)3(MnAs)3(110) 초격자의 전자구조와 자성에 대한 제일원리 연구)

  • Lee, J.I.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.111-114
    • /
    • 2006
  • We investigated the magnetism and electronic structures for the layered structures consisting of (110) layers of zinc-blende CrAs and MnAs. We calculated the electronic structures for $(CrAs)_3(MnAs)_3(110)$ superlattice consisted of alternating three layers of CrAs(110) and MnAs(110) by the full-potential linearized augmented plane wave (FLAPW) method. The calculated magnetic moment of Cr in interface layer ($3.07\;\mu_B$) was slightly larger than that of Cr atom in center layer ($3.06\;\mu_B$), while that of interface Mn atom ($3.74\;\mu_B$) was slightly smaller than the value of Mn atom in center layer ($3.76\;\mu_B$). The electronic structure and half-metallicity in this superlattice were discussed using the calculated density of states.

Microstructure and Microdefects of Diamond Thin Films Deposited by MPECVD (마이크로웨이브 화학증착법에 의한 다이아몬드 박막의 미세구조오 미세결함)

  • Lee, Se-Hyeon;Lee, Yu-Gi;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.833-840
    • /
    • 1996
  • Diamond thin films were deposited on p-type (100) Si wafers using MPECVD. Prior to deposition, ultrasonic striking was done to improve density of nucleation sites with dimond powder of 40~$60\mu$m size. Then diamond thin films were deposited at $^900{\circ}C$, 40Torr and 1000W microwave power using ${CH}_{4}$ and ${H}_{2}$ gases. The purity, the morphology and the microstructur'e and microdefects of diamond thin films were characterized by Raman spectroscopy, SEM and TEM, repectively. In Raman spectroscopy the peaks of non-diamond phase increased as ${CH}_{4}$, concentration increased. In SEM, the morphology of diamond thin films varied from crystalline to cauliflower as ${CH}_{4}$, concentration increased. As ${CH}_{4}$ con centration increased, the density of defects increased, with most defects being {III} twin. ${MTP}_{5}$, were formed with five (II]) planes. As these (Ill) Planes were twinned, ${MTP}_{5}$, represented five-fold symmetry. ]n the interfaces, defects in diamond thin films fanned out from small regions implying nucleation sites.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Numerical Analysis of Thermo-mechanical Stress and Cu Protrusion of Through-Silicon Via Structure (수치해석에 의한 TSV 구조의 열응력 및 구리 Protrusion 연구)

  • Jung, Hoon Sun;Lee, Mi Kyoung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • The through-silicon via (TSV) technology is essential for 3-dimensional integrated packaging. TSV technology, however, is still facing several reliability issues including interfacial delamination, crack generation and Cu protrusion. These reliability issues are attributed to themo-mechanical stress mainly caused by a large CTE mismatch between Cu via and surrounding Si. In this study, the thermo-mechanical reliability of copper TSV technology is investigated using numerical analysis. Finite element analysis (FEA) was conducted to analyze three dimensional distribution of the thermal stress and strain near the TSV and the silicon wafer. Several parametric studies were conducted, including the effect of via diameter, via-to-via spacing, and via density on TSV stress. In addition, effects of annealing temperature and via size on Cu protrusion were analyzed. To improve the reliability of the Cu TSV, small diameter via and less via density with proper via-to-via spacing were desirable. To reduce Cu protrusion, smaller via and lower fabrication temperature were recommended. These simulation results will help to understand the thermo-mechanical reliability issues, and provide the design guideline of TSV structure.

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.