• Title/Summary/Keyword: 계면트랩

Search Result 58, Processing Time 0.026 seconds

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET (GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향)

  • Park, Byeong-Jun;Kim, Han-Sol;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

Effects of Annealing on Electrical Characteristics of Double-Gated Silicon Nanosheet Feedback Field-Effect Transistors (더블게이트 실리콘 나노시트 피드백 전계효과 트랜지스터의 전기적 특성에 미치는 열처리 효과)

  • Hyojoo Heo;Yunwoo Shin;Jaemin Son;Seungho Ryu;Kyoungah Cho;Sangsig Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.418-424
    • /
    • 2023
  • In this study, we examined the effects of annealing on electrical characteristics of double-gated silicon nanosheet (SiNS) feedback field effect transistors (FBFETs). When bias stresses were applied for 1000 s, the double-gated SiNS FBFETs were more affected by positive bias stresses than negative bias stresses regardless of the channel mode owing to the increase of interface traps caused by electrons in the inversion layers. After annealing at 300 ℃ for 10 mins, the devices were completely recovered to their original properties, and the characteristics did not change anymore when bias stresses were applied again for 1000 s.

The study on photoreflectance characteristics of the $Al_xGa_{1-x}As$ epilayer grown by MBE method (MBE 법으로 성장시킨 $Al_xGa_{1-x}As$ 에피층의 Photoreflectance 특성에 관한 연구)

  • 이정렬;김인수;손정식;김동렬;배인호;김대년
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.341-347
    • /
    • 1998
  • We analyzed photoreflectance (PR) characterization of the $Al_xGa_{1-x}As$ epilayer grown by molecular beam epitaxy (MBE) method. The band-gap energy $(E_0)$ satisfying low power Franx-Keldysh (LPFK) due to GaAs buffer layer is 1.415 eV, interface electricall field $(E_i)$ is 1.05$\times$$10^4$V/cm, carrier concentration (N) is $1.3{\times}10^{15}\textrm{cm}^{-3}$. In PR spectrum intensity analysis at 300 K the $A^*$ peak below $(E_0)$ signal is low and distorted because of residual impurity in sample growth. The trap characteristic time ${\tau}_i$ of GaAs buffer layer is about 0.086 ms, and two superposed PR signal near 1.42eV consist of the third derivative signal of chemically eteched GaAs substrate and Franz-Keldysh oscillation (FKO) signal due to GaAs buffer layer.

  • PDF

A Study on the Characteristics and Programming Conditions of the Scaled SONOSFET NVSM for Flash Memory (플래시메모리를 위한 Scaled SONOSFET NVSM의 프로그래밍 조건과 특성에 관한 연구)

  • 박희정;박승진;남동우;김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.914-920
    • /
    • 2000
  • When the charge-trap type SONOS(polysilicon-oxide-nitride-oxide-semiconductor) cells are used to flash memory, the tunneling program/erase condition to minimize the generation of interface traps was investigated. SONOSFET NVSM(Nonvolatile Semiconductor Memory) cells were fabricated using 0.35 ㎛ standard memory cell embedded logic process including the ONO cell process, based on retrograde twin-well, single-poly, single metal CMOS(Complementary Metal Oxide Semiconductor) process. The thickness of ONO triple-dielectric for the memory cell is tunnel oxide of 24 $\AA$, nitride of 74 $\AA$, blocking oxide of 25 $\AA$, respectively. The program mode(V$\_$g/=7, 8, 9 V, V$\_$s/=V$\_$d/=-3 V, V$\_$b/=floating) and the erase mode(V$\_$g/=-4, -5, -6 V, V$\_$s/=V$\_$d/=floating, V$\_$b/=3 V) by MFN(Modified Fowler-Nordheim) tunneling were used. The proposed programming condition for the flash memory of SONOSFET NVSM cells showed less degradation(ΔV$\_$th/, S, G$\_$m/) characteristics than channel MFN tunneling operation. Also, the program inhibit conditins of unselected cell for separated source lines NOR-type flash memory application were investigated. we demonstrated that the phenomenon of the program disturb did not occur at source/drain voltage of 1 V∼12 V and gate voltage of -8 V∼4 V.

  • PDF

Sensitive Characteristics of Hot Carriers by Bias Stress in Hydrogenated n-chnnel Poly-silicon TFT (수소 처리시킨 N-채널 다결정 실리콘 TFT에서 스트레스인가에 의한 핫캐리어의 감지 특성)

  • Lee, Jong-Kuk;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.218-224
    • /
    • 2003
  • The devices of n-channel poly silicon thin film transistors(TFTs) hydrogenated by plasma, $H_2$ and $H_2$/plasma processes are fabricated. The carriers sensitivity characteristics are analyzed with voltage bias stress at the gate oxide. The parametric sensitivity characteristics caused by electrical stress conditions in hydrogenated devices are investigated by measuring the drain current, threshold voltage($V_{th}$), subthreshold slope(S) and maximum transconductance($G_m$) values. As a analyzed results, the degradation characteristics in hydrogenated n-channel polysilicon thin film transistors are mainly caused by the enhancement of dangling bonds at the poly-Si/$SiO_2$ interface and the poly-Si grain boundary due to dissolution of Si-H bonds. The generation of traps in gate oxide are mainly dued to hot electrons injection into the gate oxide from the channel region.

Analysis of the Interface Trap Effect on Electrical Characteristic and Reliability of SANOS Memory Cell Transistor (SANOS 메모리 셀 트랜지스터에서 Tunnel Oxide-Si Substrate 계면 트랩에 따른 소자의 전기적 특성 및 신뢰성 분석)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Ki;Om, Jae-Chul;Lee, Seaung-Suk;Bae, Gi-Hyun;Lee, Hi-Deok;Lee, Ga-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.94-95
    • /
    • 2007
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program speed, reliability of memory device on interface trap between Si substrate and tunneling oxide was investigated. The devices were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SONOS cell transistors with larger interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. Therefore, to improve SANOS memory characteristic, it is very important to optimize the interface trap and charge trapping layer.

  • PDF

The reliability physics of SiGe hetero-junction bipolar transistors (실리콘-게르마늄 이종접합 바이폴라 트랜지스터의 신뢰성 현상)

  • 이승윤;박찬우;김상훈;이상흥;강진영;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.239-250
    • /
    • 2003
  • The reliability degradation phenomena in the SiGe hetero-junction bipolar transistor (HBT) are investigated in this review. In the case of the SiGe HBT the decrease of the current gain, the degradation of the AC characteristics, and the offset voltage are frequently observed, which are attributed to the emitter-base reverse bias voltage stress, the transient enhanced diffusion, and the deterioration of the base-collector junction due to the fluctuation in fabrication process, respectively. The reverse-bias stress on the emitter-base junction causes the recombination current to rise, increasing the base current and degrading the current gain, because hot carriers formed by the high electric field at the junction periphery generate charged traps at the silicon-oxide interface and within the oxide region. Because of the enhanced diffusion of the dopants in the intrinsic base induced by the extrinsic base implantation, the shorter distance between the emitter-base junction and the extrinsic base than a critical measure leads to the reduction of the cut-off frequency ($f_t$) of the device. If the energy of the extrinsic base implantation is insufficient, the turn-on voltage of the collector-base junction becomes low, in the result, the offset voltage appears on the current-voltage curve.

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure (비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.14-18
    • /
    • 2019
  • The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.