• Title/Summary/Keyword: 계면유동

Search Result 141, Processing Time 0.027 seconds

The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge (정상 염수쇄기의 형상과 흐름 장의 물리적 특성)

  • 이문옥
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.62-73
    • /
    • 1990
  • An experimental study is performed in order to catch the characteristics of the flow field at arrested salt wedge, using a rectangular open channel. Arrested salt wedge is generally so stable that the observations are easy, but velocities and interfacial waves are measured with the aid of visualization method, by injection of fluorescent dyes. The density interface, which is defined as the zone of maximum density variation with depth, exists in about 0.5 cm below the visual interface, and vertical density profile is quite well satisfied with Homeborn model. Interfacial layer has high turbulent intensity and its thickness decreases as the overall Richardson number increases and has magnitude of roughly 17% of upper layer. Cross-sectional velocity distribution just shows the influence of a side-wall friction and in the upper layer vertical velocity profile also becomes uniformly as Reynolds number increases, but in the lower layer it shows nearly parabolic type. Supposes that we divide salt wedge into three domains, that is, river mouth, intermediate and tip zone, entertainment coefficient is small at the intermediate zone and large at the river mouth and the tip zone. River mouth or intermediate zone has comparatively stable interface and capillary wave therefore s produced and propagated downstream. On the other hand, tip zone is very unstable, cusping ripple or bursting ripple is then produced incessantly. Arrested salt wedge form is nearly linear and has no relation to densimetric Froude number and Reynolds number.

  • PDF

CFD Code Development for a Two-phase Flow with an Interfacial Area Transport Equation (계면면적 수송방정식을 적용한 이상유동 해석코드 개발)

  • Bae, B.U.;Yoon, H.Y.;Euh, D.J.;Song, C.H.;Park, G.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2696-2701
    • /
    • 2007
  • For the analysis of a two-phase flow, the interaction between two phases such as the interfacial momentum or heat transfer is proportional to the interfacial area. So the interfacial area concentration (IAC) is one of the most important parameters governing the behavior of each phase. This study focuses on the development of a computational fluid dynamics (CFD) code for investigating a boiling flow with a one-group IAC transport equation. It was based on the two-fluid model and governing equations were calculated by SMAC algorithm. For checking the robustness of the developed code, the experiment of a subcooled boiling in a vertical annulus channel was analyzed to validate the capability of the IAC transport equation. As the results, the developed code was confirmed to have the capability in predicting multi-dimensional phenomena of vapor generation and propagation in a subcooled boiling.

  • PDF

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF

Concentration Effects on Improved Mechanical Properties of Chopped Kenaf Fiber Filled Polypropylene Composite (케냐프섬유로 강화된 PP복합재료내의 섬유의 함량이 기계적특성 향상에 미치는 효과)

  • Oh, Jeong-Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • The effects of chopped kenaf fiber concentration on mechanical property of polypropylene (PP) composite are investigated. The addition of kenaf increased the tensile strength, flexural modulus, impact strength, specific gravity, and HDT, while decreased the elongation%, flexural strength, and melt flow index. The increase of mechanical properties is due to increased surface area contacting between fiber and polymer matrix and fiber-fiber interaction. Volatile extractives in the kenaf seemed to decrease the interfacial adhesion between kenaf surface and PP.

A Comparison Study on Drag Reduction Characteristics of Polymer and Surfactant as Drag Reduction Additive (고분자불질 및 계면활성제의 유동마찰 저감 특성 비교 연구)

  • Cho, Sung-Hwan;Ryu, Jae-Sung;Kim, Seong-Su;Jung, Sang-Hoon;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.398-403
    • /
    • 2010
  • The drag reduction(DR) of non-ionic surfactant and polymer according to the variation of fluid velocity, temperature and surfactant concentration was investigated experimentally. For this experiment, the kind of surfactant was non ionic amine-oxide and the kinds of polymer were polyacrylamide and xantan gum. An experimental apparatus equipped with one water storage tanks was built and two flow meters, two pressure gauges for data logging system was installed. Results showed that the kinds of polymer, polyacrylamide and xantan gum, had DR of below 20% for below 500 ppm in fluid temperature of $50{\sim}80^{\circ}C$. But the kind of surfactant, amine oxide, had DR of above 40% for 500~1000 ppm in fluid temperature of $50{\sim}80^{\circ}C$. As a result, amin oxide showed better materials to use to the district heating system.

Modified SIMPLE Algorithm for the Numerical Analysis of Incompressible Flows with Free Surface (개량된 SIMPLE알고리듬을 이용한 비압축성 자유계면유동의 수치해석)

  • Hong Chun Pyo;Lee Jin ho;Mok Jin ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.609-616
    • /
    • 2005
  • While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipments or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented fur the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm.

Development of Environmental-friendly Nontoxic Organic.Inorganic Complex Pigment (환경친화적 무독성 유.무기 복합안료 개발연구)

  • Do, Young-Woong;Hong, Zhao;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1739-1744
    • /
    • 2008
  • Non-toxic orgarnic inorgarnic complex green pigment using Fluidized Bed Vapor Deposition(FB-VD) process was developed to alternate green pigment used heavy metals chrome and lead in present domestic. Kaolin materials and $CaCO_3$ were used as supporter of pigment and surface and compositions of supporters were characterized by SEM and EDXS, respectively. Various kind of surface active agents(surfactants) were also used to optimize the dry condition or color revelation. Results showed that anion type surfactant is most suitable for dry and color revelation of pigment.

Effect of Water on Lecithin/Bile/Decane Organogels (레시틴/담즙염/데케인 유기젤에 대한 물의 영향)

  • Eun-ae Chu;Na-hyeon Kim;Min-seok Kang;Kyo-chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.131-135
    • /
    • 2023
  • Lecithin self-assembles into reverse spherical micelles in organic solvents as an amphiphilic molecule. When additives such as bile salts and water are introduced into lecithin solutions, it induces structural changes in the molecular form of lecithin, leading to the transformation into reverse cylindrical micelles. In this study, we observe the rheological changes of lecithin/bile salt mixtures in a decane system after the addition of water. The resulting mixtures exhibit high viscosity and characteristics of viscoelasticity, suggesting potential applications in various fields such as drug delivery and edible oil gels.

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

The Effect on Partial Melting on Superplastic Flow of ${Si_3}{N_{4p}}$/2124 Al Composites (II) (국부적 용융이 ${Si_3}{N_{4p}}$/2124 Al 복합재의 초소성 거동에 미치는 영향 (II))

  • Jeong, Ha-Guk;Kim, Hye-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.585-589
    • /
    • 2001
  • Many experimental results have revealed that the development of cavitaition during tensile deformation is limited by the Presence of liquid phases. However, the presence of liquid phases does not always lead to high-strain-rate superplasticity, because too much liquid causes intergranular decohesion at grain boundaries/interfaces in metal-matrix composites. Thus, it is important to examine the nature of interfaces of superplastic composites in order to understand the origin of superplastic flow related to liquid grain boundaries during high-strain-rate superplastic deformation. This study shows that a large elongation is obtained at the temperature, that is close to the onset temperature for partial melting in the superplastic composites, but the elongation significantly decreases at slightly higher temperatures, which are close to the end temperature fur partial melting. This indicates that there is an optimum amount of the liquid phase for obtaining high-strain-rate superplasticity in these materials.

  • PDF