• 제목/요약/키워드: 계면물성

검색결과 596건 처리시간 0.023초

A Study on the Performance Variations of Liquid-crystal Aqueous Cleaning Agents with their Formulating Components and Mixing Ratios (액정 세척용 수계 세정제의 배합성분과 혼합비에 따른 성능 변화)

  • Jeong, Jae-Yong;Lee, Min-Jae;Bae, Jae-Heum
    • Clean Technology
    • /
    • 제16권2호
    • /
    • pp.103-116
    • /
    • 2010
  • It has been reported that the LCD panel market in the FPD industry is become growing and its panel size and production capacity are increasing, and its manufacturing technique is improved every year. FPD manufacturing process requires high cleanliness in its overall process. Especially, FPD cleaning process which accounts for 30~40% of total manufacturing process is very important in its technological and productivity aspects. It is difficult to remove residual liquid-crystal in the fine gap after liquid-crystal injection process in the cell. In this study, aqueous cleaning agents with excellent cleaning, rinsing, and penetrating abilities, but minimum ion content for LCD panel were formulated through mixing glycol ether-type and glycol dimethyl ether-type solvents and nonionic surfactants which are widely used as raw materials for alternative cleaning agents because of environmental regulation at home and abroad. And the formulated cleaning agents were applied to clean FPD liquid crystal after its injection in the cell. Physical properties, cleaning efficiencies, and rinsabilities of the formulated cleaning agents with different combination ratios of solvents, surfactants and additives were measured. As experimental results, the formulated cleaning agents showed higher wetting indices and cloud point than the traditional commercial cleaning agent. And it was found that cleaning efficiencies of the formulated cleaning agents were influenced by the structure of main solvents in them and the types of liquid crystal as soil for cleaning. The best cleaning agents among the formulated cleaning agents showed similar cleaning efficiencies and better rinsabilities compared to the conventional cleaning agent.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • 제24권2호
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

Effect of Aqueous Phase Composition on the Stability of a Silica-stabilized Water-in-oil Emulsion (유화제로서 실리카를 이용한 유중수형 에멀젼의 안정성에 미치는 수상부 조성의 영향)

  • Kim Jin-Hwang;Kim Song-I;Kyong Kee-Yeol;Lee Eun-Joo;Yoon Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제30권3호
    • /
    • pp.353-359
    • /
    • 2004
  • The extent of silica flocculation can be modified by varying the silica concentration, aqueous phase pH, salt and polvmer concentration. High volume fraction W/O emulsion stabilized by hydrophobic silica was established with various aqueous phase conditions for cosmetic application. By increasing the silica concentration up to $1.0\;wt\%,$ the size of droplet decreased. A high silica concentration increased the viscosity of continuous oil phase by network formation, which resulted in target size of droplet. The stability of W/O emulsion is improved as increasing the aqueous phase pH. At low and intermediate pH, the emulsions became more stable by adding salt $(0.083\;mol\;dm^{-3}\;MgSO_4).$ At high PH, the presence of salt caused significant destabilization. The gelation behavior of the emulsion indicates that the effect of salt on silica-stabilized emulsion is derived from an electrostatic attraction. The addition of xanthan gum in aqueous phase increased the mono-dispersity of the W/O emulsion by making water more hydrophobic and hindering the recombination of droplets. In conclusion, these results indicate that very stable emulsifier-free, finely dispersed W/O emulsion can be achieved for cosmetic application by changing the aqueous phase composition.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • 제24권4호
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

The Preparation and Physicochemical Properties of Dipalmitoylphosphatidylcholine/Cholesterol/Fluorinated Surfactant Vesicle Incorporated Fatty Acid Salt (불소화지방산염 첨가에 의한 디팔미토일포스파티딜콜린/콜레스테롤/불소화계면활성제 베지클의 제조와 물성 측정 연구)

  • Park, Young Ju;Kwon, Kyung Ok;Kim, Myung Ja
    • Applied Chemistry for Engineering
    • /
    • 제9권3호
    • /
    • pp.457-461
    • /
    • 1998
  • The vesicle system of DPPC(dipalmitoylphosphaticylcholine)/Chol(Cholesterol) has been modified by incorporating various mole fractions of flourinated surfactant($C_8F_{17}(CH_2)_2OCO-CH_2CH(SO_3Na)COO(CH_2)_2C_8F_{17}$. Sodium bis(1H,1H,2H,2H-heptadecaflurododecyl)-2-sulfosuccinate, FS)/fluorinated fatty acid salt ($C_7F_{15}COONH_4$, ammoniumpentadecaflurooctyrate, FFS), and their physicochemical properties have been investigated in an attempt to enhance the stability of phospholipid vesicle system. The ${\zeta}$-potential measurement by use of Zetamaster sub-micron Particle Electrophoresis Analyzer (Malvern Co.) showed that a charged homogeneous DPPC/Chol/FS vesicle has been formed owing to the incorporated FFS effect on the membrane, playing a role as a cosurfactant in the bilayer between DPPC and FS components. With increase in the concentration of FFS, it was found that the particle size and also surface charge of the DPPC/Chol/FS vesicle decreased. The stability of DPPC/Chol/FS/FFS liposome was found to be enhanced significantly compared to that of DPPC/Chol/FS according to the dispersity change as a function of time. The release rate of dye molecule of Methylene Blue from the DPPC/Chol/FS/FFS vesicle was determined to be slower than that of DPPC/Chol/FS system, and it may be attributed to the increase in microviscosity of the hydrophobic region in the bilayer. The affinfinity of DPPC/Chol/FS/FFS vesicles to albumin was found to be slightly lowered compared to that of DPPC/Chol/FS. Based on these findings, it was confirmed that a more stable and homogeneous vesicle system of DPPC/Chol/FS could be prepared by addition of FFS, acting as a cosurfactant in the aggregate formation.

  • PDF

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권6호
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.